
Performance Modeling of PBFT Consensus Process for
Permissioned Blockchain Network (Hyperledger Fabric)

Harish Sukhwani1, José M. Martı́nez1, Xiaolin Chang2, Kishor S. Trivedi1, and Andy Rindos3

1Department of Electrical & Computer Engineering, Duke University, Durham, USA
2School of Computer and Information Technology, Beijing Jiaotong University, Beijing

3IBM Corporation

Abstract—While Blockchain network brings tremendous ben-
efits, there are concerns whether their performance would match
up with the mainstream IT systems. This paper aims to investi-
gate whether the consensus process using Practical Byzantine
Fault Tolerance (PBFT) could be a performance bottleneck
for networks with a large number of peers. We model the
PBFT consensus process using Stochastic Reward Nets (SRN)
to compute the mean time to complete consensus for networks
up to 100 peers. We create a blockchain network using IBM
Bluemix service, running a production-grade IoT application and
use the data to parameterize and validate our models. We also
conduct sensitivity analysis over a variety of system parameters
and examine the performance of larger networks.

Index Terms—blockchain; hyperledger fabric; PBFT; perfor-
mance modeling; Stochastic reward nets

I. INTRODUCTION & SYSTEM DESCRIPTION

Reasonable success of the Bitcoin crypto-currency [1] has
led to an increasing interest in the technical community
for using the underlying decentralized ledger of transactions
(called Blockchain) to solve other interesting problems. The
blockchain is an encrypted, distributed database/transaction
system where all the peers share information in a decentral-
ized, trusted and secure manner. In our work, we focus on
the v0.6 of Hyperledger Fabric [2], which is an open-source
implementation of distributed ledger platform for running
smart contracts in a modular architecture [3]. Thus Bitcoin
could be an application running on the fabric.

In a public blockchain network such as Bitcoin, any one
can join the network, which induces the risk of Sybil attack.
Bitcoin resolves this by making it computationally expensive
for a peer to propose a new block of transactions using an ap-
proach called proof-of-work (PoW). Although crypto-currency
is an interesting application, its performance is worrisome,
with time to confirmation of transaction of ten minutes or
more, achieving a maximum throughput of 7 transactions per
second [4]. In a private blockchain network, all the participants
are whitelisted and bounded by strict contractual obligations
to behave “correctly”, and hence more efficient consensus
protocols such as Practical Byzantine Fault Tolerance (PBFT)
[5] can be used [6]. PBFT works on the assumption that less
than one-third of the peers are faulty (f ), which means that the
network should consist of at least n = 3f + 1 peers to tolerate
f faulty peers [5]. Thus f = b(n−1)/3c. The network requires
2f + 1 peers to agree on the block of transactions.

Leader
Validating Peers

(non-leaders)
Clients

Validating Network
(Peers + Leader)

…

Order TX Batch

Create TX Batch

Pre-prepare

Prepare

Prepare

Commit

Commit

3-phase protocol (PBFT) starts 

3-phase protocol (PBFT) ends

Execute TX Batch

Append new block to chain

…

Fig. 1. Sequence diagram of transactions on the Blockchain network

Figure 1 shows a high-level view of a permissioned
blockchain network. Each participating institution is a Vali-
dating Peer (VP), one of which is elected to be the leader.
The clients make transaction requests to their respective insti-
tution’s VP, which validates the transaction and broadcasts it
to other VPs. After a few seconds (defined as batch timeout)
or after a set number of pending transactions (defined as batch
size), the leader creates a block of the pending transactions,
maintaining order by timestamp. Then it broadcasts this can-
didate block to other VPs to obtain a consensus on the block
using PBFT. If 2f +1 peers agree, then each VP executes all
the transactions and appends the block as the next block on
their private ledger. Each block is hashed with the value of
the previous block, creating a chain of blocks, and hence the
name blockchain.
II. PERFORMANCE MODEL OF PBFT CONSENSUS PROCESS

In our work, we model the “mean time to complete consen-
sus” of the PBFT consensus process using Stochastic Reward
Nets (SRN) [7], by capturing the three most time-consuming
steps, viz. transmission time of consensus messages between
peers (transitions with subscript Tx), time to process incoming
consensus message (transitions with subscript Ip), and time
to prepare consensus message for next stage (transitions with
subscript Op). We make the following assumptions (many of
these assumptions can be relaxed if needed):



Start PP0Op PP1

PP2

PP3

PP01TX

PP02TX

PP03TX

PP1′

PP2′

PP3′

P1Op

P2Op

P3Op

P10

P12

P13

P20

P21

P23

P30

P31

P32

P10Tx

P12Tx

P13Tx

P20Tx

P21Tx

P23Tx

P30Tx

P31Tx

P32Tx

P0 P0Ip P0′

P1 P1Ip P1′

P2 P2Ip P2′

P3 P3Ip P3′

PC0

PC1

PC2

PC3

C0Op

[C0]

C1Op

[C1]

C2Op

[C2]

C3Op

[C3]

C01

C02

C03

C10

C12

C13

C01

C02

C03

C30

C31

C32

C01Tx

C02Tx

C03Tx

C10Tx

C12Tx

C13Tx

C20Tx

C21Tx

C23Tx

C30Tx

C31Tx

C32Tx

C0 C0Ip C0′

C1 C1Ip C1′

C2 C2Ip C2′

C3 C3Ip C3′

D0

D1

D2

D3

D0i

[D0]

D1i

[D1]

D2i

[D2]

D3i

[D3]

D0′

D1′

D2′

D3′

D Di

[Di]

Done

Pre-Prepare Prepare Commit

Fig. 2. SRN model for PBFT consensus process with four peers

1) A leader peer is already chosen before the block trans-
action starts, and it does not change during the execution
of the three-phase protocol for a single block.

2) Rate of processing a message at each VP is the same.
3) Rate of message transmission between all pairs of peers

is the same.
4) VPs do not fail at any time during the execution of the

three-phase protocol for a single block.
In the SRN model in Figure 2, a token in place Start

signifies that the leader is ready with the new proposed block,
and a token in place Done signifies the completion of the
consensus process. The leader is identified with number 0 and
other VPs with the numbers 1, 2, and 3 respectively. The model
is intuitive and easy to follow. The model is intuitive and easy
to follow. Due to space limitations, we ignore the detailed
explanation of the model.

TABLE I
GUARD FUNCTIONS FOR SRN MODEL IN FIGURE 2

Guard Name Guard Function
[C0] If #P0′ ≥ 2f , return 1, else return 0
[Cx], x ∈ (1, 2, 3) If #Px′ ≥ 2f − 1, return 1, else return 0
[Dx], x ∈ (0, 1, 2, 3) If #Cx′ ≥ 2f , return 1, else return 0
[Di] If

∑
y∈(0,1,2,3) #Dy′ = 3f + 1,

return 1, else return 0

III. ANALYSIS RESULTS

We setup the blockchain network with n = 4 and f = 1
using the IBM’s Bluemix service, running an IoT application
[8] developed by IBM Watson team. For a system running
over few weeks with around 800 blocks committed per hour,
we analyze the logs for 50 randomly chosen blocks. We fit the
datasets with Exponential, Weibull, Gamma, Hypoexponential

(2-stage, 3-stage), LogNormal and Pareto distributions using
Maximum Likelihood Estimate (MLE) technique. We evaluate
the goodness-of-fit using Kolmogorov-Smirnov (KS) statistic
at 5% level for significance and select the distribution with the
lowest Akaike information criteria (AIC). The best-fit models
are as follows: Weibull (shape = 2.092, scale = 0.8468) for
transitions with subscript Tx, Weibull (shape = 1.561, scale
= 0.124) for transitions with subscript Ip, Weibull (shape
= 1.509, scale = 0.2575) for transitions with subscript Op
in pre-prepare and prepare phase, 2-stage Hypoexponential
(λ1 = 22.050, λ2 = 267.97) for transitions with subscript
Op in commit phase. Since the firing time corresponding to
transitions in our model have non-exponential distribution,
we use SPNP tool in simulator mode only (as opposed to
computing analytical-numerical solution). For our model, the
total time to deposit a token in Done place corresponds to
the “time to complete consensus” for a block. We conduct
5000 runs and consider the average total time value (along
with confidence interval) as our result. Due to the presence
of outliers in the empirical results, we compare the estimated
mean time to consensus from our model (3.0815 ms) with
the median empirical results (3.314 ms). With a relative error
of about 7%, we find the results comparable and our model
validated.

A. Sensitivity Analysis
Assuming all the peers are equidistant from each other, we

increase the time to transmit (Tx) the message keeping the
other parameters constant, and find that the mean transmission
time increases with a slope of 3.0539, which makes sense
since messages are transmitted in three phases of the consensus
process. In the same manner, if we increase time to prepare
consensus message Op in preprepare and prepare phase, the



3.0

4.5

6.0

7.5

9.0

10.5

12.0

13.5

15.0

16.5

4 710 16 34 49 64 82 100

Number of peers (n)

M
e

a
n

 t
im

e
 t
o

 c
o
n

s
e

n
s
u
s
 (

m
s
)

3.0

3.3

3.6

3.9

4.2

4.5

4 7 10 16

Fig. 3. Mean time to consensus for large number of peers (mean Tx = 0.75ms)

mean time to consensus increases with a slope of 1.89; and
for the time to process incoming message Ip, the mean time to
consensus increases with a slope of 3.309. Thus, a slowdown
in handling incoming prepare and commit messages can have
a greater impact on the mean time to consensus than the
slowdown in preparing message for the new phase.

B. Large number of peers

We generate models for larger values of n, where
n = 4, 7, 10 for f = 1, 2, 3, respectively, up to n = 100. We
evaluate the model using the parameters from our experimental
validation. In the analysis up to 10 peers (inset of Figure 3), we
find that the time to consensus increases with n, however, the
slope decreases at n = 7. Since 2f + 1 consensus messages
are required by each peer in the prepare and the commit
phases, the proportion of peers required for consensus de-
creases from three out of four peers (75%) for n = 4 to five out
of seven peers (71.42%) for n = 7, and so on, asymptotically
reaching 2

3 (66.667%). However, the slope starts increasing
again after n = 10. This happens due to increasing queuing
delays for messages in the prepare and commit phases. The
slope continues to increase slightly as n increases. Eventually,
the mean time to consensus for n = 100 is 5.34 times that for
n = 4.

In our Bluemix setup, the peers are co-located in the same
rack. Let us consider a realistic scenario where peers are
located in separate regions of the same data centers or different
data centers, and hence the mean time to transmit messages
will be much larger. Let us assume that the mean time to
transmit messages between all pairs of peers is 5 ms. As shown
in Figure 4, we see a similar pattern for the mean time to
consensus; however, the percentage increase in the mean time

16.0

16.5

17.0

17.5

18.0

18.5

4 7 10 16 34

Number of peers (n)

M
e
a
n
 t
im

e
 t
o
 c

o
n
s
e
n
s
u
s
 (

m
s
)

Fig. 4. Mean time to consensus for large number of peers (mean Tx = 5ms)

to consensus for n = 34 compared to n = 4 is 15%, compared
to 116% increase when mean time to transit is 0.75 ms
(Figure 3). This percentage increase continues to decrease
for networks with even larger mean transmission delays. Thus
if the transmission delays are an order of magnitude or two
greater than the time to process or queue the message, the
mean time to consensus does not increase significantly as n
increases.

Thus, our model can estimate performance metrics as a
function of various system configurations and parameters and
provide early feedback about potential performance bottle-
necks. In our ongoing work, we continue to validate the model
for a larger number of peers and a wider range of PBFT
parameter and system configurations. We are also analyzing
other performance aspects, such as block execution.

ACKNOWLEDGMENTS

This research was also supported in part by IBM under a
faculty award and an IBM student fellowship. The authors
would like to thank Konstantinos Christidis for helping us
face-validate our model, Kim Letkeman for running the IoT
application on IBM Bluemix setup and related discussions,
Mihir Shah and Dale Avery for facilitating the data collection,
Nan Wang for support with the SPNP package.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,”
https://bitcoin.org/bitcoin.pdf.

[2] “Hyperledger Fabric v0.6,” http://web.archive.org/web/20160924231627/
http://hyperledger-fabric.readthedocs.io/en/latest/protocol-spec.

[3] C. Cachin, “Architecture of the Hyperledger Blockchain Fabric,” https:
//www.zurich.ibm.com/dccl/papers/cachin dccl.pdf.

[4] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, E. Gün Sirer, D. Song, and R. Wattenhofer,
On Scaling Decentralized Blockchains. Springer Berlin Heidelberg,
2016, pp. 106–125.

[5] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance and
Proactive Recovery,” ACM Trans. Comput. Syst., vol. 20, no. 4, pp. 398–
461, Nov. 2002.

[6] T. Swanson, “Consensus-as-a-Service: a brief report on the emergence
of permissioned, distributed ledger systems,” http://www.ofnumbers.com/
wp-content/uploads/2015/04/Permissioned-distributed-ledgers.pdf, 2015.

[7] J. K. Muppala, G. Ciardo, and K. S. Trivedi, “Stochastic Reward Nets for
Reliability Prediction,” in Communications in Reliability, Maintainability
and Serviceability, 1994, pp. 9–20.

[8] “IBM Watson IoT Track and Trace contract - GitHub,” https://github.
com/ibm-watson-iot/blockchain-samples/.

http://web.archive.org/web/20160924231627/ http://hyperledger-fabric.readthedocs.io/en/latest/protocol-spec
http://web.archive.org/web/20160924231627/ http://hyperledger-fabric.readthedocs.io/en/latest/protocol-spec
https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf
https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf
http://www.ofnumbers.com/wp-content/uploads/2015/04/Permissioned-distributed-ledgers.pdf
http://www.ofnumbers.com/wp-content/uploads/2015/04/Permissioned-distributed-ledgers.pdf
https://github.com/ibm-watson-iot/blockchain-samples/
https://github.com/ibm-watson-iot/blockchain-samples/

