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Abstract: Accurate modeling of availability is a practical problem in today’s complex high-

availability systems. But as the system gets more complex, the state-space required for 

accurate modeling tends to grow very fast. In order to mitigate the largeness in model 

generation / solution, the system model could be divided into subsystem models, and 

solution for sub-models can be combined to yield overall model solution. Such hierarchical 

composition techniques reduce the state-space tremendously. But simple hierarchical 

techniques provide exact results only when sub-model solutions are independent. In many 

scenarios, some components or procedures are shared across subsystems, which violate 

independence in sub-model solution. Hence approximation techniques like nearly 

independent systems are required to model systems where sub-model solutions are 

dependent. This paper demonstrates approximation techniques for availability modeling for 

a fluid pressure control system using the concepts of nearly independent subsystems and 

fixed-point iteration. 
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1. Introduction 

As the human race is evolving, we are increasingly dependent on the technological 

infrastructure like the internet, transportation, energy supply, communications, health, 

financial services and commerce. Even short outages in such infrastructure can cause 

economic losses, environmental problems or, in the worst case, human life loss. Thus it is 

imperative for such critical systems and infrastructure to be designed and implemented with 

assurance of high reliability and availability. 

Large fault tolerant systems consist of many subsystems, where each subsystem has 

many components. During the operation of complex systems, failure and repair of 

individual components or subsystems is inevitable. Also high availability requirements 

necessitate very accurate system models [1]. Thus availability modeling is a practical 

problem for evaluating dependability of such fault tolerant systems. 

State-based methods are widely used for dependability and performance modeling of 

complex systems. These techniques are able to capture dynamic behavior and dependencies 

that non-state-space methods like reliability block diagrams (RBD) and fault trees cannot 

capture [2, 3, 4]. However, state-space models suffer from state-space explosion i.e., 

extremely large state-space is required for the accurate modeling of real systems, referred 

to as largeness [3]. Two general approaches for dealing with largeness are largeness 

avoidance and largeness tolerance. 

In largeness tolerance [5] techniques, system is modeled using higher level paradigms 

like stochastic Petri-nets which provide a compact representation of a model, which is 

automatically converted into an underlying Markov model. Special algorithms and data 

structures can be utilized to manipulate and store the underlying CTMCs thus reducing the 

space requirements of the state space, generator matrix, and iteration vectors [6]. 



 

 

Petri nets are particularly suited to represent logical interactions among parts of the 

system in a natural way. It is a powerful paradigm to represent situations involving 

synchronization, sequencing, concurrency and conflict. It is also useful to automate the 

generation of large state spaces. A Petri net consists of places, transitions, arcs and tokens. 

The vector of the number of tokens in all the places represents the marking of the Petri net, 

which is equivalent to a state in the underlying CTMC. When a transition fires, token(s) is 

removed from the input place and token(s) are added to the output places. If the transition 

firing times are exponentially distributed, such nets are called stochastic Petri nets (SPN), 

where the underlying reachability graph representing transitions from one marking to 

another is a homogeneous CTMC. The flavor of SPN that we use in this paper is called 

stochastic reward nets (SRN) [7], using package stochastic Petri net package (SPNP) [8]. 

Other flavors of SPN include generalized stochastic Petri nets (GSPN) [9] and Stochastic 

activity networks [10]. 

Another way to tackle largeness is to avoid generating a large model, called largeness 

avoidance [2, 3, 5]. Some of the techniques include state truncation methods, hierarchy, and 

fixed-point iteration. In our work, we focus on hierarchical modeling techniques [2, 3, 11], 

where a large system can be viewed as composed of subsystems, each of which in turn can 

be further sub-divided into smaller subsystems or basic components. Thus, the whole 

system forms a hierarchy of subsystems, which at the lowest level is composed of 

components. Instead of generating and solving the full model, if smaller models are 

generated whose solution is combined (or rolled up) to yield the overall model solution, it 

could alleviate the largeness problem significantly. These techniques are referred to as 

hierarchical composition, where the overall system model consists of one or more sub-

models of possibly different types that interact with each other [12, 11]. The model solution 

is obtained by solving the sub-models and combining sub-model solutions. 

If there are no shared components or procedures across subsystems, the availability of 

each subsystem is independent of each other, and the overall system availability can be 

computed from the availabilities of the individual subsystems. However, in real systems, 

some components or procedures are shared across subsystems and state-space models are 

needed to capture such interactions or dependencies. For example, if there are shared repair 

facilities across subsystems, the system availability cannot be computed by invoking the 

independent assumption. Although full system model can capture all such dependencies, 

generating and solving large monolithic models can be error prone or even impossible. 

Instead we can use approximation techniques to capture dependencies across sub-models, 

yet retain the hierarchical nature of the model. 

The objective of this paper is to demonstrate the approximation techniques for analyzing 

large systems using the concepts of nearly independent subsystems and fixed-point iteration 

from [13]. The system under consideration is a repairable fluid pressure control system with 

four subsystems. The paper analyzes three possible system configurations combined with 

two different repair policies: independent repair (as many repair persons as failed 

subsystems) and shared preemptive repair policy with a single repair person and priority 

list. More complex non-preemptive repair policies are the object of ongoing research. In 

Section 2, subsystems have no redundancy, next each subsystem has redundant components 

(in Section 3), and finally the travel time of the repair-person is considered as well (in 

Section 4). For each scenario we compare the system steady-state availability with 

independence assumption, the monolithic solution over the whole state space (when 

feasible) and the approximate solution using a nearly independent assumption. Scalability 

of the nearly independent solution is analyzed vs system largeness in Section 5. 
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2. System Description: No Redundancy 

Consider a system used to maintain the fluid pressure in a tank at a constant value. The 

system is represented in Figure 1 and is composed of four components (or blocks): a 

pressure sensor (S), a control logic (L), a group motor-pump (P) and a valve (V). The 

components are functionally connected in series since the correct operation of each 

component is needed to guarantee the correct functioning of the system. 

 

 
Figure 1: Series System for Guaranteeing a Constant Pressure in a Tank 

Assume that each subsystem in Figure 1 consists of a single binary repairable component. 

Throughout the paper we assume that failure and repair times are exponentially distributed 

random variables with parameter values given in Table 1. If the components fail and get 

repaired independently, the resulting CTMC has 24 = 16 states. However, we can exploit 

the total independence across components and use simple hierarchical solutions. Let 

𝜆𝑆, 𝜆𝐿 , 𝜆𝑃, 𝜆𝑉be the failure rates and 𝜇𝑆, 𝜇𝐿 , 𝜇𝑃, 𝜇𝑉  be the repair rates for the four components 

respectively. The steady-state availability for each component, whose value is reported in 

the last column of Table 1, can be obtained by the expression 𝐴𝑖 =
𝜇𝑖

𝜆𝑖+𝜇𝑖
    (with i = S,L,P,V). 

Thus we do have a hierarchical model with the top level being a series RBD and at the 

bottom level we have four 2-state CTMCs as shown in Figure 2. Under the independence 

assumption, the system steady-state availability 𝐴𝑆𝑦𝑠  becomes 

𝐴𝑆𝑦𝑠 = 𝐴𝑆𝐴𝐿𝐴𝑃𝐴𝑉 = 0.995754485 

and can alternatively be computed from the monolithic CTMC (in Figure 3a). In this 

CTMC, the state name represents a vector of components (S, L, P, V ) in UP (1) or DOWN 

(0) state. Also the states which have at most one change in the state name vector are 

connected to each other.  

 

Figure 2: Reliability Block Diagram with 2-state CTMCs in each Block 

 



 

 

 
(a) Independent Repair 

 
(b) Shared Repair: decreasing MTTR priority 

Figure 3: CTMC for System with no Component-level Redundancy 

 

2.1 Shared Repair-Person: Exact Solution 

Now suppose we wish to consider a situation in which a single repair-person is shared 

among the components. If more than one component is failed, the repair-person must decide 

which component to repair first. Different preemptive and non-preemptive repair policies 

can be envisaged and they can be easily represented as a CTMC on the whole state space. 

By adopting a preemptive repair priority policy, a priority list is defined and the repair crew 

repairs the components according to the order defined in the priority list. Throughout the 

paper, the list is ordered according to the decreasing values of the MTTR, i.e., the component 

with highest MTTR is repaired first (which is 𝑃 ≻ 𝑉 ≻ 𝑆 ≻ 𝐿). The CTMC with shared 

preemptive repair priority policy is shown in Figure 3b. With the parameters in Table 1, the 

steady-state availability is 

 𝐴𝑆𝑦𝑠 = 0.993414494 (1) 

 
Table 1: Failure, Repair Rates and Steady-State Availability for System with no Component-

Level Redundancy 

Component MTTF MTTF−1 MTTR MTTR−1 Availability 

𝑖 1

𝜆
(hours) 𝜆 1

𝜇
 (hours) 𝜇 𝜇

𝜆 + 𝜇
 

P 5000 2e-4 16      0.0625 0.99681021 

V 10000 1e-4 8      0.125 0.99920061 

S 2500 4e-4 4      0.25 0.99840260 

L 2000 5e-4 2      0.5 0.99900100 
 

 

2.2 Shared Repair-Person: Approximate Solution 

The shared repair facility prevents the use of the independence assumption. An approximate 

hierarchical solution may be obtained by resorting to the concept of nearly independent 

subsystems developed in [14, 13]. A system is composed by nearly independent subsystems 

if the probability of a state of the overall system can be approximated by the product of 

probabilities of the states of individual subsystems 

𝑃(𝑆 = 𝑠1, 𝑠2, … , 𝑠𝑛) ≈ 𝑃(𝑆1 = 𝑠1)𝑃(𝑆2 = 𝑠2) … 𝑃(𝑆𝑛 = 𝑠𝑛) 

where 𝑃(𝑆 = 𝑠1, 𝑠2, … , 𝑠𝑛) is the probability of a state of the system where subsystem i is 

in state 𝑆𝑖 = 𝑠𝑖. A system with dependent subsystems can be treated as nearly independent 
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if each individual subsystem can be modified to individually account for the effect of the 

dependence.  

Consider the shared repair with priority 𝑃 ≻ 𝑉 ≻ 𝑆 ≻ 𝐿. If P is repaired first, the repair 

of the other subsystems with lower priority is delayed. We can account for this delay 

modifying the repair rates of the subsystems with lower priority. The CTMC MP related to 

model P is solved first and the probability QP that the subsystem P is under repair is 

calculated. Thus the probability that the repair-person is idle is 𝑞𝑃 = (1 − 𝑄𝑃). Subsystem 

V can be repaired only if the repair-person is not busy with subsystem P, which can be 

approximately accounted for by reducing the repair rate of subsystem V by the factor qP : 

𝜇𝑉
′ = 𝜇𝑉𝑞𝑃 = 𝜇𝑉(1 − 𝑄𝑝) 

 
Table 2: Nearly Independent Approximation for Shared Repair for System with no Component- 

Level Redundancy 

Sub-

system 

Up 

states 

Repair 

states 

Updated repair rates Indep. Repair 

Availability 

Shared Repair 

Availability 

𝑖 𝐴𝑖 Qi 𝜇𝑖
′ 𝐴𝐼𝑛𝑑𝑒𝑝.  𝑅𝑒𝑝𝑎𝑖𝑟 𝐴𝑆ℎ𝑎𝑟𝑒𝑑  𝑅𝑒𝑝𝑎𝑖𝑟 

P 𝜋1 𝜋0 𝜇𝑃 0.996810207 0.996810207 

V 𝜋1 𝜋0 𝜇𝑉(1 − 𝑄𝑃) 0.999200639 0.999198084 

S 𝜋1 𝜋0 𝜇𝑆(1 − 𝑄𝑃)(1 − 𝑄𝑉) 0.998402556 0.998396168 

L 𝜋1 𝜋0 𝜇𝐿(1 − 𝑄𝑃)(1 − 𝑄𝑉)(1 − 𝑄𝑆) 0.999000999 0.998995392 
 

 

Applying this idea iteratively, in order to start repair on subsystem 𝑀𝑖, the repair-person 

must be idle on all the subsystems 𝑀𝑗 with (𝑗 ≤ (𝑖 − 1)) . This acyclic dependency between 

the subsystem models for repair priority 𝑃 ≻ 𝑉 ≻ 𝑆 ≻ 𝐿 is represented by the import graph 

shown in Figure 4. The updated repair rates for each subsystem are reported in the fourth 

column of Table 2. 

 
Figure 4: Import graph showing acyclic interaction between the sub-models 

 

Comparing the last two columns of Table 2, we see that the difference between the exact 

and the approximate availability values increases as the priority decreases. The system 

steady-state availabilities for the three considered cases are reported in the first row of Table 

5. 

3. Redundant Components in Subsystems: Independent Repair 

In order to increase the overall system availability, redundant repairable subsystems are 

introduced whose configurations are shown using both CTMC and equivalent stochastic 

reward net (SRN). For CTMCs, the UP states are denoted in dark shade. For SRNs, the rates 

and enabling functions are provided wherever applicable. The reward rates are skipped for 

brevity and can be understood from Eqn. (3). 

Subsystem S - There are 3 sensors that work in a 2:3 logic with a single repair-person. The 

system is up when at least 2 out of 3 sensors are up. The CTMC and the SRN for the 

sensor block are shown in Figure 5. Note that although the system is considered down 



 

 

in state 1 of the CTMC, one working sensor can fail. Thus the steady-state availability 

is given by: 

𝐴𝑆 = 𝜋3 + 𝜋2 

 
 (a)  CTMC  

(b)  SRN 

Figure 5: The 2:3 Sensor Block with Single Repair-Person 

 

Subsystem L - The control logic is duplicated and the recovery mechanism has a coverage 

probability c. The CTMC and the SRN for the control logic block are shown in Figure 

6, and its steady-state availability is given by: 

𝐴𝐿 = 𝜋2 + 𝜋1 

 
(a)  CTMC 

 
(b)  SRN 

Figure 6: The Duplicated Control Logic with Coverage c 

 
Subsystem P - The pump system is duplicated in warm stand-by configuration [15], and 

the block is repaired at once upon system failure. α is the dormancy factor for the 

standby unit. The CTMC and the SRN (where states (01) and (10) are merged) for 

the pump subsystem are shown in Figure 7, and its steady-state availability is given 

by: 

𝐴𝑃 = 𝜋11 + 𝜋01 + 𝜋10 

 
 

(a)  CTMC 
 

(b)  SRN 

Figure 7: The Duplicated Pump Subsystem in Warm Stand-by Configuration 

 

Subsystem V - The valve subsystem is duplicated with a single repair-person, but the 

reconfiguration upon failure of one component takes an exponentially distributed 

time with rate δ. During reconfiguration the valve subsystem is not available. The 

CTMC and the SRN for the valve subsystem are shown in Figure 8, and its steady-

state availability is given by: 

𝐴𝑉 = 𝜋2 + 𝜋1 
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(a)  CTMC 
 

(b)  SRN 

Figure 8: The Redundant Valve Subsystem with Recovery Delay δ 

 
If the subsystems are independently repairable, the steady-state availability of the whole 

system can be computed as the product of the availabilities of each subsystem. Thus we 

have a hierarchical model with the top level being a series RBD and at the bottom level we 

have four CTMCs as shown in Figure 9. In the computation, we assume the following 

additional numerical values: Dormancy factor α = 0.9 in Figure 7, coverage factor c = 0.9 

in Figure 6 and delay δ = 1 in Figure 8. The overall system steady-state availability 

computed with the SHARPE [3] package becomes 

 𝐴𝑆𝑦𝑠 = 𝐴𝑆𝐴𝐿𝐴𝑃𝐴𝑉 = 0.997490970 (2) 

 
Figure 9: Fluid Pressure Control System as a RBD with Subsystems as Individual Blocks 

3.1 Shared Repair-Person: Exact Solution 

Suppose now that a single repair-person is shared among all the subsystems, in the same 

preemptive priority order 𝑃 ≻ 𝑉 ≻ 𝑆 ≻ 𝐿. Since the subsystems S, L, P, V have 4, 3, 4, 4 

states respectively, the monolithic CTMC for the whole system has n = 4∗3∗4∗4 = 192 

states. Generating such a CTMC can be cumbersome and error prone, hence the state space 

can be generated using SRN [7] as shown in Figure 10. The system is said to be available 

when there is at least two tokens in UP place for sensor block, and at least one token each 

in UP places for both logic and pump block, and at least one token in UP place & no token 

in delay place for valve block. Thus the reward rate can be defined as 

 

(3) 

Using the same numerical values, the steady-state availability of this system obtained 

using SPNP is 

 𝐴𝑆𝑦𝑠 = 0.997485390685 (4) 

which is slightly less than the availability in the independent repair case (Eqn. (2)). 



 

 

 
Figure 10: Modeling Repair Priority with Decreasing MTTR using SRN 

 

3.2 Shared Repair-Person: Approximate Solution 

A nearly independent approximation can be obtained similarly to Section 2.2. The explicit 

formulas for 𝜇′ for the ordered list 𝑃 ≻ 𝑉 ≻ 𝑆 ≻ 𝐿 and the availability results are given in 

Table 3. The whole system availability is 𝐴𝑆𝑦𝑠 = 𝐴𝑆𝐴𝐿𝐴𝑃𝐴𝑉 = 0.997489119 which gives 

a slightly less optimistic value than the one from the monolithic exact model (in Eqn. (4)). 

Numerically, the availability is the same up to 5 digits of accuracy, but the modeling and 

computations are far less tedious compared to the full model constructed by SRN. 

Table 3: Nearly Independent Approximation for Shared Repair for System with Redundancy 

Sub- 
system 

Up states Repair states Updated repair rates Indep.  

Repair 

Availability 

Shared  

Repair 

Availability 

𝑖 𝐴𝑖  𝑄𝑖 𝜇𝑖
′ 𝐴𝐼𝑛𝑑𝑒𝑝.  𝑅𝑒𝑝𝑎𝑖𝑟 𝐴𝑆ℎ𝑎𝑟𝑒𝑑  𝑅𝑒𝑝𝑎𝑖𝑟 

P 𝜋11 + 𝜋01 + 𝜋10 𝜋0 𝜇𝑃 0.997907835 0.997907835 

V 𝜋2 + 𝜋1 𝜋1 + 𝜋0 𝜇𝑉(1 − 𝑄𝑃) 0.999799082 0.999799077 

S 𝜋3 + 𝜋2 𝜋2 + 𝜋1 + 𝜋0 𝜇𝑆(1 − 𝑄𝑃)(1 − 𝑄𝑉) 0.999984689 0.999984576 

L 𝜋2 + 𝜋1 𝜋1 + 𝜋0 𝜇𝐿(1 − 𝑄𝑃)(1 − 𝑄𝑉)(1 − 𝑄𝑆) 0.999798444 0.999796706 
 

4. Travel Time for Repair-Person: Independent Repair 

In a more realistic model the repair person must be notified as soon as his/her service is 

required, and if he/she is not on site, the travel time must be accounted for [13]. The travel 

time accounts for the delay occurring from the instant at which the request for service is 

notified to the instant at which the repair person is on site and ready to start the repair 

operation. Note that the travel time is often much larger than the proper repair time. We 

have further assumed that the travel time is exponentially distributed with rate 𝜇𝑡. 

To account for the travel time, we must duplicate all the states in which repair service is 

required, to distinguish whether the repair-person is already on site or not. The individual 

CTMCs for each subsystem are drawn in Figure 11, where we have denoted by a subscript 

n the states in which the repair-person is not on site and by a subscript t the states in which 

the repair-person is on site. From the states labeled t, when the repair person is on site, the 

repair is accomplished with the given repair rate, while from the states labeled n the travel 

transition with rate 𝜇𝑡  is introduced. 
A hierarchical model with independent sub-models (similar to Figure 9) is used to 

compute the steady-state availability. Using SHARPE: 𝐴𝑆𝑦𝑠 = 𝐴𝑆𝐴𝐿𝐴𝑃𝐴𝑉  = 0.997255093 
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 (a)  Sensor (S) 

 
(b) Control Logic (L) 

 
c) Motor pump (P) 

 
d) Valve (V) 

Figure 11: CTMCs for All Subsystems including Travel Time with Shared Repair 

 

4.1 Travel Time with Shared Repair-Person: Exact Solution 

If a single repair-person is shared among all the subsystems with the same preemptive 

priority order, the monolithic CTMC model has 5∗6∗5∗7 = 1050 states, and it is 

cumbersome and error prone to generate. 

Extending the model explained in Section 3.1, we use the SRN in Figure 12. Here an 

extra subnet is added to indicate the presence or absence of a repair-person.  

 

Figure 12: Modeling Repair-Person Arrival with Repair Priority using SRN 

The transition 𝑡𝑎𝑟𝑟 is enabled when any of the subsystems is needing repair. Then the 

repair-person arrives in time exponentially distributed with rate 𝜇𝑡. The immediate 

transition 𝑡𝑑𝑒𝑝𝑎𝑟𝑡  is enabled when the repairs for all the subsystems are completed. Thus the 

enabling condition for transition 𝑡𝑎𝑟𝑟 and  𝑡𝑑𝑒𝑝𝑎𝑟𝑡 can be defined as 

   

 

(5) 

The monolithic CTMC can be automatically generated from the SRN to provide a value 

of the steady-state availability equal to A = 0.997431402583 



 

 

4.2 Travel Time with Shared Repair-Person: Approximate Solution 

Let us attempt to find an approximate hierarchical solution by considering the subsystems 

as nearly independent. Compared to the previous example, the effect of sharing the travel 

time is more complex, as represented in the individual CTMC of Figure 13. 

 

When a failure occurs in subsystem 𝑀𝑖, the following situations may occur: 

1. In the states labeled t, the repair-person is on site and actually repairing a component 

in subsystem 𝑀𝑖; hence, the system may undergo a failure at rate 𝜆𝑖  or a repair with a 

repair rate 𝜇𝑖
′ reduced by the priority order. 

2. The repair-person is not on site 𝑀𝑖, hence the CTMC is in a state labeled n and the 

repair cannot start. Two situations may occur: 

(a) The repair-person is not on site and must be notified. The failure rates in this 

case are denoted by 𝜆′  and the failure transition is directed to another state n; 

(b) The repair-person is already on site in some subsystem 𝑀𝑗 ≠ 𝑀𝑖  and does not 

need to be notified. The failure rates in this case are denoted by 𝜆′′ and the 

failure transition is directed to a state labeled t. 

For each of the subsystems i, the probability that the repair-person is on-site repairing 

the subsystem i is given by 

𝑟𝑖 = ∑ 𝜋𝑗

𝑗∈∗𝑡

 

 
(a)  Sensor (S) 

 
(b) Control Logic (L) 

 
c) Motor pump (P) 

 
d) Valve (V) 

Figure 13: CTMCs for all Subsystems including Travel Time with Shared Repair 

 

The states ∗n of the subsystem 𝑀𝑖 indicate that the repair-person is not working on 

subsystem i. The outgoing failure rates from states ∗n are split into two summands: 

 

𝜆 = 𝜆′ + 𝜆′′ where 𝜆′ = 𝜆 ∏(1 − 𝑟𝑗) and

𝑗≠𝑖

 𝜆′′ = 𝜆 [1 − ∏(1 − 𝑟𝑗)

𝑗≠𝑖

] (6) 

The term ∏ (1 − 𝑟𝑗)𝑗≠𝑖  in Eqn. (6) is the probability that the repair-person is not on 

site repairing any subsystem, and hence the subsystem i must notify the repair-person and 
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account for the travel time. Thus for evaluating the solution for each sub-model, there is a 

cyclic dependency with the solution from the other sub-models, as shown in the import 

graph in Figure 14. Here, the bold arrows indicate the transfer of parameter values in the 

current iteration, and the dotted arrows indicate the parameter values from the previous 

iteration. Using Brouwer’s fixed-point theorem, the existence of a solution to fixed-point 

problem is proven in [13]. 

The CTMCs for the four subsystems are shown in Figure 13. As described in Section 

4, model evaluation has dependencies for both failure rates λ’s (as provided in Eqn. (6)), 

and repair rates µ’s (as given in Table 4). The analysis (including the fixed-point iteration) 

is performed using SHARPE, and the results are reported in Table 4. 

 
Figure 14: Import Graph showing Cyclic Interactions between the Sub-models 

 
Table 4: Nearly Independent Approximation for Shared Repair with Travel Time for Repair-Person 

Sub- 

system 
Up states Repair states Updated repair rates Indep. 

Repair 

Availability 

Shared Repair 

Availability 

𝑖 𝐴𝑖  𝑄𝑖 𝜇𝑖
′ 𝐴𝐼𝑛𝑑𝑒𝑝.  𝑅𝑒𝑝𝑎𝑖𝑟 𝐴𝑆ℎ𝑎𝑟𝑒𝑑  𝑅𝑒𝑝𝑎𝑖𝑟 

P 𝜋11 + 𝜋01 + 𝜋10 𝜋00𝑡 𝜇𝑃 0.997777365 0.997778487 

V 𝜋2 + 𝜋1𝑛 + 𝜋1𝑡 𝜋1𝑡 + 𝜋0𝑡 𝜇𝑉(1 − 𝑄𝑃) 0.999798942 0.999798938 

S 𝜋3 + 𝜋2𝑛 + 𝜋2𝑡 𝜋2𝑡 + 𝜋1𝑡 + 𝜋0𝑡 𝜇𝑆(1 − 𝑄𝑃)(1 − 𝑄𝑉) 0.999979932 0.999979839 

L 𝜋2 + 𝜋1𝑛 + 𝜋1𝑡 𝜋1𝑡 + 𝜋0𝑡 𝜇𝐿(1 − 𝑄𝑃)(1 − 𝑄𝑉)(1 − 𝑄𝑆) 0.999697619 0.999696736 
 

 

The steady-state availability is equal to ASys = 0.997255235, which is noticeably 

lower than case where repair-person travel time wasn’t considered (in Section 3, Eqn. (4)). 

From the two rightmost columns in Table 4, it is interesting to note that the availability for 

each subsystem improves in presence of shared repair. This was unlike the case in Section 

3.2, where shared repair slightly reduced the availability especially for lower repair-priority 

subsystems. Thus the overall availability in this scenario is higher compared to the 

independent repair-person case in Section 4. 

Note that from Table 4, the subsystem P was clearly the bottleneck for the system 

availability. Since it has been given the highest preemptive repair priority, in cases where 

the repair-person is present for repairing other subsystems and subsystem P needs repair as 

well, a repair-person fixes both the subsystems in a single trip. Thus overall system 

availability went up even with a single repair-person, thus saving cost and efforts. 

5. Numerical Results 

Let us discuss the benefits of the approximation techniques based on two criteria: the 

accuracy of the approximation, and the reduction in computation costs due to the 

approximation. Table 5 summarizes the availability computation for the various system 

configurations and repair scenarios considered in the previous sections. 



 

 

 Table 5: Compare Availabilities of Different System Configurations and Repair Scenarios 

Configuration Indep. Repair Shared Repair 

(exact) 

Shared Repair 

(approx.) 

# digits 

match 

No Redundancy 0.995754485 0.993414494000 0.993414420 7 

Redundancy (components) 0.997490970 0.997485390685 0.997489119 5 

Redundancy + travel time (µt =0.1) 0.997255093 0.997431402583 0.997255235 3 
 

 

Comparing the exact and approximate availability estimates in shared repair scenario, 

across all the configurations, the approximation techniques provide fairly good results, with 

match up to 5 digits of accuracy when redundancy of components is considered (2nd row of 

Table 5). 

Let us compare the availability results between independent repair scenario and shared 

repair scenario to highlight some interesting results. In the configuration where travel time 

is considered (Section 4), notice that the system availability with shared repair-person is 

higher than that with individual repair-person per subsystem. This is in contrast with the 

scenario where repair-person was available on-site when subsystem component failure 

occurred (Section 3), where shared preemptive repair results in a decrease in availability. A 

possible explanation is that when the repair-person arrives to repair a subsystem, he/she 

would take care of the repairs for failures in other subsystems that are already down or 

whose failure occurs while the first repair is in process. 

The above results could be sensitive to the mean time to travel for the repair-person. In 

Figure 15 we plot the difference between shared repair and independent repair availability 

(referred to as Availability gap) as a function of the mean time to travel (1/𝜇𝑡). As the mean 

time to travel increases, the gap increases. 

 
Figure 15: Availability Gap between Shared and Independent Repair for Different 𝜇𝑡 

Next, we compare the computation cost for the exact model with the approximate model. 

In order to deal with larger problem size, we consider system-level redundancy of say l, 

which means the entire system model is replicated l times in parallel, where all the systems 

share the same repair-person. The overall system is said to be available when any one of the 

l systems in parallel is available. Here, we consider the repair priority across systems first, 

and then within the same system. However, we have taken the configuration with no 

redundancy (as in Section 2), which means that the monolithic model for each system 

consists of 16 states. 
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Figure 16: Solution Time as a Function of System Complexity for ‘No Redundancy’ 

Configuration 

The plot in Figure 16 compares the time to generate and solve the exact SRN model with 

the approximation model using SHARPE. As the system size increases (shown in Table 6), 

the time required to solve the exact model seems to grow exponentially, but the time to 

solve the approximate model grows linearly. Also with exact SRN model it is possible to 

solve the model with 6 parallel lines only, before memory demands could not be met. Thus 

models for large fault-tolerant systems should be analyzed using approximation techniques. 

Table 6: No. of States in underlying Markov Chain for Exact SRN Model and Approx. Model 

No. of Systems 1 2 3 4 5 

No. of States in Exact Model 16 256 4096 65536 1048576 

No. of States in Approx. Model 16 32 48 64 80 
 

  

6. Conclusion 

This paper discusses nearly independent approximation techniques for availability modeling 

for a fluid pressure control system with two different repair policies: independent repair and 

preemptive repair priority policy. If a single repair-person present on-site repairs all 

subsystems with preemptive repair policy, it results in acyclic dependency among sub-

model solutions. In this scenario, assuming reasonable parameters, with a shared preemptive 

repair, the steady-state availability is lower than the case where each subsystem had its own 

dedicated repair-person. If the repair-person’s travel time is included in the model as well, 

it results in a cyclic dependency among sub-model solutions, which can be solved using 

fixed-point iteration. In this scenario, assuming reasonable parameters, with a shared 

preemptive repair, the steady-state availability is higher than the case where each subsystem 

had its own dedicated repair-person. This also saves cost and resources. Such intuitive 

(sometimes counter-intuitive) insights can be obtained from modeling large systems using 

hierarchical composition techniques with approximations. Future research on largeness 

avoidance in availability models will explore more complex repair policies with shared non-

preemptive repair and non-priority repair order, like shared FCFS repair scheduling. 
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