
Performance Modeling & Analysis of Hyperledger
Fabric (Permissioned Blockchain Network)

by

Harish Sukhwani

Department of Electrical & Computer Engineering
Duke University

Date:
Approved:

Dr. Kishor Trivedi, Supervisor

Dr. John Board

Dr. Krishnendu Chakrabarty

Dr. Daniel J. Sorin

Dr. Andrew Rindos (External)

Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the Department of Electrical & Computer Engineering

in the Graduate School of Duke University
2018

Abstract

Performance Modeling & Analysis of Hyperledger Fabric

(Permissioned Blockchain Network)

by

Harish Sukhwani

Department of Electrical & Computer Engineering
Duke University

Date:
Approved:

Dr. Kishor Trivedi, Supervisor

Dr. John Board

Dr. Krishnendu Chakrabarty

Dr. Daniel J. Sorin

Dr. Andrew Rindos (External)

An abstract of a dissertation submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in the Department of Electrical & Computer

Engineering
in the Graduate School of Duke University

2018

Copyright c© 2018 by Harish Sukhwani
All rights reserved except the rights granted by the

Creative Commons Attribution-Noncommercial Licence

http://creativecommons.org/licenses/by-nc/3.0/us/

Abstract

A blockchain is an immutable record of transactions (called ledger) between a dis-

tributed set of mutually untrusting peers. Although blockchain networks provide

tremendous benefits, there are concerns about whether their performance would be

a hindrance to its adoption. Our research is focused on Hyperledger Fabric (HLF),

which is an open-source implementation of a distributed ledger platform for running

smart contracts in a modular architecture. This thesis presents our research on per-

formance modeling of Hyperledger Fabric using a Stochastic Petri Nets modeling

formalism known as Stochastic Reward Nets (SRN). We capture the key system op-

erations and complex interactions between them. We focus on two different releases

of HLF, viz. v0.6 and v1.0+ (V1). HLF v0.6 follows a traditional state-machine

replication architecture followed by many other blockchain platforms, whereas HLF

V1 follows a novel execute-order -validate architecture. We parameterize and validate

our models with data collected from a real-world Fabric network setup. Our models

provide a quantitative framework that helps compare different deployment configu-

rations of Fabric and make design trade-off decisions. It also enables us to compute

performance for a system with proposed architectural improvements before they are

implemented. From our analysis, we recommend design improvements along with

the estimates of performance improvement. Overall, our models provide a stepping

stone to the Hyperledger Fabric community towards achieving optimal performance

of Fabric in the real-world deployments.

iv

Contents

Abstract iv

List of Tables x

List of Figures xi

Acknowledgements xiv

1 Introduction 1

1.1 Contributions of the Dissertation . 6

1.2 Outline of the Dissertation . 7

2 Overview of Hyperledger Fabric 9

2.1 Key Concepts . 9

2.1.1 Smart Contracts (chaincode) 9

2.1.2 Consensus . 10

2.2 Hyperledger Fabric v0.6 . 11

2.2.1 System overview . 11

2.2.2 Data structures . 13

2.2.3 Block Execution process . 13

2.3 Hyperledger Fabric V1 . 16

2.3.1 Nodes . 17

2.3.2 Data Structures . 19

2.3.3 Transactions . 21

v

2.3.4 Transaction Flow . 22

2.3.5 Channels . 24

2.3.6 Ordering Service . 25

3 Performance Metrics for Blockchain Networks 29

3.1 Performance Evaluation Setup . 30

3.2 Transaction Latency . 33

3.3 Transaction Throughput . 37

3.4 Scalability & Elasticity . 38

4 Empiricial Analysis for Hyperledger Fabric v0.6 43

4.1 Experimental Setup . 43

4.2 Analysis for PBFT consensus process 44

4.2.1 Measurements . 44

4.2.2 Model parameterization . 45

4.3 Analysis for Block Execution process 47

4.3.1 Measurements . 47

4.3.2 Model parameterization . 49

4.4 Related Work . 50

5 Performance modeling of Hyperledger Fabric v0.6 52

5.1 PBFT consensus process for Fabric v0.6 53

5.2 Performance model of PBFT consensus process 55

5.3 Model Validation . 59

5.4 Model Analysis . 60

5.4.1 Sensitivity Analysis . 60

5.4.2 Large number of peers . 62

5.5 Performance model of Block Execution process 65

vi

5.6 Discussion . 66

5.6.1 Threats to validity . 66

5.7 Related Work . 67

5.7.1 Performance evaluation of BFT consensus protocol 67

5.8 Conclusions . 68

6 Empiricial Analysis for Hyperledger Fabric V1 69

6.1 Experimental Setup . 69

6.2 Load generation using Hyperledger Caliper 71

6.3 Test application . 71

6.4 Measurements . 72

6.5 Model Parameterization . 74

6.5.1 Transaction-level parameters 75

6.5.2 Block-level parameters . 77

6.6 Analysis by transaction phase . 81

6.6.1 Endorsing . 82

6.6.2 Ordering . 84

6.6.3 Validation . 85

6.7 Implications of block size on transaction throughput and latency . . . 86

6.8 Related Work . 87

6.8.1 Hyperledger Fabric V1 . 87

6.8.2 Public blockchain networks . 89

6.8.3 Performance evaluation framework 91

6.9 Future Work . 91

7 Performance Modeling of Hyperledger Fabric V1 94

7.1 SRN model of the system . 95

vii

7.2 Model Parameterization . 97

7.3 Model Validation . 98

7.4 Overall system analysis . 100

7.5 Model Analysis . 102

7.5.1 Endorsement Process . 102

7.5.2 Ordering Service . 104

7.5.3 Block Validation & Commit 106

7.6 Discussion . 111

7.6.1 Largeness of stochastic model 111

7.6.2 Limitations of our model . 111

7.6.3 Threats to validity . 111

7.7 Related Work . 112

7.8 Conclusions . 113

8 Model Verification & Validation 115

8.1 Steps for Model Verification & Validation 116

8.1.1 Face validation . 116

8.1.2 Input-output validation . 117

8.1.3 Validation of model assumptions 118

8.2 Threats to validity . 119

8.2.1 Model Logic and Code . 119

8.2.2 Model Parameters . 119

8.2.3 System configuration settings 120

9 Conclusions 121

9.1 Conclusions . 121

9.2 Fabric Performance Management Infrastructure 123

viii

9.3 Future Research Directions . 125

9.3.1 Systems & Performance . 125

9.3.2 Adoption & Usability . 126

A Hyperledger Fabric V1 network setup 128

A.1 Hyperledger Fabric software installation & network setup 128

B Environment details of a blockchain network 131

C Model and analysis code for Hyperledger Fabric v0.6 134

C.1 SRN code for model with n “ 4 . 134

C.2 Python script to generate SRN code for larger networks 138

C.3 R code for Probability distribution fitting 142

D Model and analysis code for Hyperledger Fabric V1 143

D.1 Endorsing process . 143

D.2 Ordering Service . 144

D.3 Committing peer . 147

E Mathematical expression for Probability distributions 150

Bibliography 152

Biography 161

ix

List of Tables

4.1 Summary statistics for datasets corresponding to consensus process . 48

4.2 Summary statistics for datasets corresponding to block execution process 50

5.1 Guard functions for SRN model in Figure 5.2 59

6.1 Summary statistics for datasets of transaction-level parameters 76

6.2 Summary statistics for datasets of block-level parameters 78

6.3 Summary statistics for time to complete each transaction phase for
block size = 40, λC “ 80 . 82

6.4 Summary statistics for block transmission time with λC “ 80 84

7.1 Parameter values for SRN model transitions for ‘open’ transaction . . 98

7.2 Mean time to endorsement (MTTE) for different policies 103

x

List of Figures

2.1 System model of a Fabric v0.6 network with four validating peers (VPs) 11

2.2 Transaction sequence diagram on Hyperledger Fabric v0.6 12

2.3 World State and Ledger of transactions in Hyperledger Fabric v0.6 . . 13

2.4 Hyperledger Fabric V1 network with various nodes 18

2.5 State database and Ledger of transactions in Hyperledger Fabric V1 . 19

2.6 Transaction flow on Hyperledger Fabric V1 with 2 peers and ordering
service running a single channel . 22

2.7 Transaction sequence diagram on Hyperledger Fabric V1 22

2.8 Kafka-based ordering service for Hyperledger Fabric V1 27

2.9 Transactions corresponding to a channel in a single topic/partition . . 27

3.1 Representative setup for performance evaluation of a blockchain network 31

3.2 Performance evaluation of a Hyperledger Fabric V1 network 32

3.3 Transaction flow of blockchain platforms using PBFT consensus . . . 34

3.4 Transaction flow of blockchain platforms using lottery-based consensus 35

3.5 Transaction confirmation probability for blockchain network with un-
known topology . 36

3.6 Scalability framework for blockchain networks 40

4.1 Snapshot of logs for block consensus process 45

4.2 Empirical, fitted cumulative distribution function (CDF) for time to
transmit and process consensus messages 48

4.3 Snapshot of logs for block execution process 49

xi

4.4 Empirical, fitted cumulative distribution function (CDF) for time to
transaction execution and crypto-hash of world state 50

5.1 Sequence diagram of the PFBT protocol for Fabric v0.6 53

5.2 SRN model for PBFT consensus process 57

5.3 Sensitivity analysis with increasing Tx for equidistant peers 60

5.4 Sensitivity analysis with increasing Tx for one isolated peer 61

5.5 Mean time to consensus for large number of peers (mean Tx = 0.75ms) 63

5.6 Mean time to consensus for large number of peers from the model that
considers no queuing . 63

5.7 Mean time to consensus for large number of peers (mean Tx = 5ms) . 64

5.8 SRN model for Block Execution process at each VP 65

6.1 Hyperledger Fabric V1 network setup 70

6.2 Transaction life-cycle on Hyperledger Fabric V1 with measurement
details . 72

6.3 Empirical analysis for ‘time to client processing’ (TPr) 75

6.4 Empirical analysis for ‘time to endorsement’ (TEn) 76

6.5 Empirical analysis for ‘time to transmit to ordering service’ (TTx) . . 77

6.6 Empirical analysis for ‘time to validate transaction’ (TVSCC) 78

6.7 Empirical analysis for ‘time to block creation and delivery’ (TOS) . . 79

6.8 Empirical analysis for ‘time to MVCC validation’ (TMVCC) 80

6.9 Empirical analysis for ‘time to Ledger write’ (TLedger) 81

6.10 Time to complete endorsement for AND() policy 82

6.11 Empirical analysis for ‘Time to complete endorsement’ for AND() policy 83

6.12 Empirical analysis for ‘Block transmission time’ for block size 40, λC “
80 . 85

6.13 Inter-arrival time between blocks (block size 40, λC “ 80) 86

7.1 SRN model of Hyperledger Fabric V1 network 95

xii

7.2 Model validation comparing overall system throughput 99

7.3 Model validation comparing mean queue length at various transaction
phases with empirical measurements (m) (block-size = 80) 99

7.4 Utilization, mean queue length at various transaction phases (block-
size = 80) . 101

7.5 Impact of block size, multiple endorsers on max. throughput 102

7.6 Generalized SRN model to capture AND/OR endorsement policy be-
tween two peers . 102

7.7 SRN model of the ordering service considering block timeout and block
size constraints . 104

7.8 Probability of block generated due to timeout as a function of endorsed
transaction arrival rate and block size 105

7.9 SRN model of a committer peer, validating and committing blocks of
transations . 106

7.10 Utilization, mean queue length at various block validation stages for
model with block-size = 80, VSCC validation CPUmax “ 4 106

7.11 Sensitivity of the committer peer with mean time to ledger write . . . 107

7.12 Transient analysis for utilization and queue length of various stages in
a committer with block-size = 80, VSCC validation CPUmax “ 4 . . . 108

7.13 SRN model of a committing peer in pipeline order 109

7.14 Mean latency to complete block validation & commit for pipeline
model vs regular model . 109

8.1 Model verification & validation process 116

9.1 Fabric Network management infrastructure 124

B.1 Block propagation time across the network of peers 132

xiii

Acknowledgements

I am deeply indebted to Prof. Kishor Trivedi for providing me an opportunity to

be a part of his research group. His constant feedback on my work helped me stay

on course to deliver on my projects. The open-ended questions that he asked me

during the group meetings taught me how to think like a researcher and search for

meaningful problems on my own. He inspired us to go one step further and collab-

orate with the funding agency/collaborator to implement the solution in practice.

Although such efforts might not result in new papers, he taught me the importance

of closing the loop, thus delivering meaningful results beyond just publications. In

spite of all the challenges we face as researchers, he taught me by example on how

to be kind and generous to fellow researchers and be a good human being.

I would like to thank my dissertation committee members - Prof. John Board,

Prof. Krishnendu Chakrabarty, Prof. Dan Sorin - for their feedback and encour-

agement on this journey. I am especially grateful to Dr. Andrew J. Rindos for

facilitating our close collaboration with IBM that helped shape my research direc-

tion. His insightful feedback and collaboration of various projects taught me valuable

lessons on research delivery.

I would like to thank the following organizations for their generous financial

support during the various phases of my graduate school: Duke University Graduate

School, Department of Electrical & Computer Engineering, IBM and NASA GSFC.

Thanks to the members of our research group - Javier Alonso, Rafael Fricks,

xiv

Xiaodan Li, José M. Mart́ınez, Nan Wang, Ruofan Xia - for helpful discussions,

comments, and feedback. Thanks to the visitors of our group - Xiaolin Chang, Zheng

Zheng - for their generous feedback about my work. Special thanks to Dr. Andrea

Bobbio who mentored me to write my first research paper, gave me opportunity to

work on the Green book and for all the good times at IIT Gandhinagar.

I would like to thank Dr. Dorothea Wiesmann, Dr. Jens Jellito and team mem-

bers at IBM Research - Zurich for providing me an opportunity to deep-dive into

Hyperledger Fabric. In addition, thank you Konstantinos Christidis for facilitating

meaningful discussion and collaborations in this area.

Thanks to the staff members at ECE, particularly Amy Kostrewa for all her

assistance during the various stages of the graduate program, Olena Aleksandrova

and Alex Naseree for scheduling group meetings and appointments.

This journey would not have begun without the encouragement and support of my

family members, Lata and Manish Assudani, Meena and Manoharlal Sukhwani, who

inspired me to leave behind a full-time job with a work visa to pursue my dream

career. I could not have finished this journey without the unconditional love and

support of my parents Vijaya and Vasudev Sukhwani, and my wife, Palak. In spite

of our careers keeping us geographically apart, Palak made sure we spent meaningful

time together. Our exciting trips together in Europe kept us sane. I am excited

about rebooting to a new life with her in Portland, Oregon.

Thanks to my friends Abhinandan and Aditi for the fun times and cheering

me during my gloomy days. Thanks to my friends Abhishek, Anish, Mayuresh,

and Nisarg for their great company. Special thanks to my doctor Tom Mitchell for

taking care of my health and well-being during the crucial final year of this journey.

Finally, I would like to thank my friends at the JKYog NC organization - Ajith,

Hina, Jayesh, Laxmi, Neela, Neeta, Parag, Sonali - in whose company I continued

my spiritual journey.

xv

1

Introduction

According to National Institute of Standards and Technology (NIST) [1], “Blockchains

are immutable digital ledger systems implemented in a distributed fashion (i.e., with-

out a central repository) and usually without a central authority.” Each peer main-

tains a copy of the ledger. For a “block” of proposed transactions in the network,

the peers obtain a consensus on the validity of the block of transactions. A new

block of transactions is appended with the hash of the previous block committed

on the ledger, thus forming a hash chain of blocks. This ordered back-linked list of

blocks gives it the name blockchain. Therefore, a blockchain network is a distributed

database/transaction system where all the peers share information in a decentral-

ized, trusted and secure manner. Thus a cryptocurrency such as Bitcoin [2] is an

application running on the blockchain network.

Blockchain network enables trusted parties to send transactions in a peer-to-

peer fashion in a verifiable manner, without the need of a trusted intermediary.

This peer-to-peer network allows parties to settle transactions quicker, resulting in

faster movement of goods and services [3]. Introduction of blockchain networks in

businesses and enterprises will bring out ground-breaking changes in the way they

1

function and operate [3]. It would result in never-seen-before business models as

well as a transformation of the existing business models [4]. Blockchains are widely

regarded as a promising technology to run trusted exchanges in the digital world.

A significant selling point for organizations to move to a blockchain network is

the ability to automate business transactions using smart contracts [5]. A smart

contract [6] is a collection of business rules that are shared and validated collectively

by a group of stakeholders, which can be deployed on a blockchain [7]. Such smart

contracts help execute business processes in an automated and trusted manner. A

smart contract is invoked by a transaction referring to it. Thus, a transaction is a

request to the blockchain to execute a function on the ledger, which is implemented

as a smart contract.

Blockchain networks can be classified based on the following criteria: a) which

clients are allowed to submit transactions, b) which peers are allowed to order trans-

actions (including consensus), c) how are new clients/peers authorized to join the

network. In a public or permissionless blockchain network, anyone can participate

in the network without a specific identity. Such networks usually involve a native

cryptocurrency or other economic incentives. Popular examples are Bitcoin [2] and

Ethereum [8]. Such networks use lottery-based consensus protocols such as proof-of-

work (PoW). A permissioned blockchain network is operated by known entities as in

a consortium where members or stakeholders in a given business context [9]. All the

participants are whitelisted and bounded by strict contractual obligations to behave

“correctly” [5]. New peers can be added by permission from the existing peers by ap-

proval or pre-defined rules or with permission from a regulator [10]. Such networks

use voting-based consensus protocols such as Practical Byzantine Fault Tolerance

(PBFT) [11]. There is no inherent need of a cryptocurrency in such networks. A

private blockchain network is a special case of permissioned blockchain operated by

a single entity. In summary, organizations participating in permissioned blockchain

2

networks can benefit from a distributed ledger technology (DLT) without a need of

a cryptocurrency [12].

Hyperledger project is an open source collaborative effort hosted by the Linux

Foundation to advance blockchain technologies for business enterprises [13, 14]. The

collaborators include leaders from technology, finance, banking, supply chain, IoT

and manufacturing companies. In this thesis, we focus on Hyperledger Fabric [15],

which is an open-source implementation of a distributed ledger platform for running

smart contracts in a modular architecture. It aims at high degrees of confidentiality,

resilience, flexibility, and scalability [9]. It is currently deployed in more than 400

proof-of-concept and production distributed ledger systems across different industries

and use-cases [16]. Hyperledger Fabric blockchain platform is being used to solve

problems in diverse areas such as food safety [17], trade-finance [18] and supply-

chain [19].

Although blockchain networks provide tremendous benefits, there are concerns

about whether their performance would match up with the mainstream information

technology (IT) systems. For public networks such as Bitcoin, the block frequency is

ten minutes [20], which means it takes ten minutes or more confirm a transaction. A

recent study by [21] shows that Bitcoin achieves a maximum throughput of 7 trans-

actions per second, which is abysmal compared to a mainstream payment system.

Fortunately, permissioned blockchain networks can be designed to use more efficient

consensus mechanisms such as PBFT, resulting in much higher throughput and lower

latency with less computation, bandwidth, and storage requirements [5, 21]. The em-

pirical results for the PBFT protocol are promising, with a block latency of 288ms

and throughput of 113k transactions per second for four peers located in the same

geographical region [21]. In a similar setup, Hyperledger Fabric has been observed

to achieve maximum throughput of 3500 transactions per second with sub-second

latency [22]. Another concern is the scalability, whether the performance can keep

3

up with an increasing number of peers.

Performance evaluation of the system by experiments is necessary; however, it

is tedious and time-consuming. For example, the authors in [21] considered a large

number of peers (up to 64) spread across eight geographies and multiple block sizes.

If such details can be captured in the model, the model can compute performance

metrics as a function of various system configurations and parameters. Stochastic

models provide a quantitative framework that helps compare different configurations

and make design trade-off decisions. It also enables us to compute performance for

potential architectural changes that the software engineers are considering for the

future releases.

In this dissertation, I present our research on performance modeling of Hyper-

ledger Fabric. We focused on two different releases of Hyperledger Fabric, viz. v0.6

and v1.0+ (V1), each with a different architecture. I also provide an extensive em-

pirical analysis of model parameterizations and other vital observations for both the

releases.

Hyperledger Fabric v0.6 has a traditional state-machine replication architecture

followed by many other blockchain platforms. Each block of transactions under-

goes a consensus process among the participating peers before it is added to the

distributed ledger. The consensus is achieved using Byzantine fault tolerant (BFT)

protocols such as Practical Byzantine Fault Tolerance (PBFT). There are concerns

whether this consensus process could be a performance bottleneck for networks with

a large number of peers. To understand this in depth, we modeled it using Stochastic

Reward Nets (SRN). We compute the “mean time to complete consensus” for net-

works up to 100 peers. We created a blockchain network using IBM Bluemix service,

running a production-grade IoT application and used the data to parameterize and

validate our models. For four peers, we find that the solutions from our model are

comparable to the empirical results. Our sensitivity analysis results show that the

4

mean time to consensus increases by three times the increase in the message trans-

mission time between peers (hence the geographical distance), due to three phases

of communication involved. For larger networks, we find that the mean time to con-

sensus increases slowly up to 10 peers and then increases linearly with the number

of peers. We also find that the percentage increase in the mean time to consensus

with the number of peers is significant only if the message transmission time is of

the same order of magnitude as the message processing and queuing time.

To overcome the limitations of v0.6, the Hyperledger Fabric community com-

pletely reworked the original architecture, which was released as v1.0 (V1). This

reworked system follows a novel execute-order -validate architecture, which is a hy-

brid of passive and active replication. We developed a comprehensive performance

model using SRN from which we can compute the throughput, utilization and mean

queue length at each peer and critical processing stages within a peer. To validate

our model, we setup an HLF network in the Duke datacenter and generated a realis-

tic workload using Hyperledger Caliper [23]. From our analysis results, we find that

the endorsing process could be a performance bottleneck, especially when AND()

endorsement policy is used. For the committing peer, the transaction validation

check (using Validation System Chaincode (VSCC)) is a time-consuming step, but

its performance impact can be easily mitigated since it can be parallelized. However,

its performance is critical, since it absorbs the shock of bursty block arrivals. The

performance bottleneck of the ordering service and ledger write can be mitigated

using a larger block size, albeit with an increase in latency. We also analyze various

what-if scenarios, such as peers processing transactions in a pipeline, and multiple

endorsers per organization.

In both the projects mentioned above, we modeled the system using a Stochas-

tic Petri Nets modeling formalism known as Stochastic Reward Nets (SRN) [24].

Such a formalism allows a concise specification and an automated generation/solu-

5

tion of the underlying (stochastic) process that captures the performance behavior

of the blockchain network system. Moreover, using SRNs allows us also to study

different scenarios, by easily adding or removing system details. SRNs have been

successfully used to model different computer/communication systems from the per-

formance perspective, e.g., [25, 26, 27, 28]. If the firing times for all transitions are

exponentially distributed or can be represented by a subnet consisting of exponen-

tially distributed firing time transitions, then the underlying stochastic process is

a homogeneous continuous-time Markov chain, which makes SRN a natural choice

for a modeling formalism. Even if the firing times of some transitions are not expo-

nentially distributed (as in our analysis in Section 5.3), SRN is a convenient way to

define a scalable model for such a complex process, and compute output parameters

using discrete event simulation techniques.

1.1 Contributions of the Dissertation

For our work on modeling the PBFT consensus process for HLF v0.6, the research

contributions are:

1. Scalable model of the PBFT consensus process

2. Model validated using data collected from an IBM cloud deployment.

3. Evaluation of consensus process for a large number of peers (up to 100)

4. Sensitivity analysis as a function of time to process, queue and transmit a

message.

Next, for our work on performance modeling of HLF V1 network. The research

contributions are:

1. A comprehensive performance model of the Fabric V1 blockchain network.

For Fabric’s unique blockchain network architecture, it captures the key steps

performed by each subsystem as well as interactions between them.

6

2. Analysis for critical what-if scenarios that system developers and practitioners

care about.

3. Model validated using data from a multi-node experimental setup in Duke

datacenter.

Since different blockchain networks are designed with varying assumptions of

security and use-cases, the system metrics defined in one class of systems are not

necessarily applicable to another. In this thesis, I also attempt to present crisp and

precise definitions of the performance metrics relevant across all blockchain networks.

1.2 Outline of the Dissertation

This dissertation is organized as follows: In Chapter 2, we provide the background

material on the Hyperledger Fabric distributed ledger platform.

In Chapter 3, we discuss the performance metrics used in the literature in the

realm of blockchain networks and present crisp and clear definitions of metrics. We

also discuss metric definitions applicable specifically to the Hyperledger Fabric.

In Chapters 4 and 5, we discuss performance modeling and empirical analysis for

Hyperledger Fabric v0.6. We provide a background of the PBFT consensus process.

We also provide details of our experimental setup and model validation. Overall,

these two chapters are extended versions of our published paper [29].

In Chapters 6 and 7, we discuss performance modeling and empirical analysis for

Hyperledger Fabric V1. First, we present our overall system model, its analysis, and

overall model validation. Next, we present models and analysis for each transaction

phase, viz. endorsement, ordering, and validation. We also share extensive details

of the experimental setup, tools used, Fabric software code changes, and the tools

for analysis, such that the experiments can be reproduced and the study can be

replicated for future modeling and analysis goals.

7

In Chapter 8, we discuss our efforts on model verification and validation. We

share our experience, the challenges involved and how we overcame them towards

our goals. We also share our threats to the validity of the results of this dissertation.

Finally, we conclude our thesis in Chapter 9, and outline future avenues for

research in performance aspects of blockchain networks. We briefly describe how the

models developed in our study can be integrated as a tool that designers, developers,

and operators of Hyperledger Fabric could use to optimize the system performance

and other design trade-offs.

8

2

Overview of Hyperledger Fabric

In this chapter, we provide an overview of the Hyperledger Fabric distributed ledger

platform. We start with Hyperledger Fabric’s preview release v0.6. Unfortunately, it

had significant limitations in its architecture, resulting in poor performance and scal-

ability, among many other things. The community decided to go with a completely

different architecture, which was released as v1.0 [30]. Given the vast popularity of

this release, its architecture is expected to be continued in the upcoming releases.

Although the system architecture of release v0.6 is discontinued by the Fabric com-

munity, many other blockchain platforms implement a similar architecture at a high-

level and hence is worth reviewing it from a performance and scalability perspective.

2.1 Key Concepts

2.1.1 Smart Contracts (chaincode)

All operations in the HLF are performed using smart contracts (known as chaincode

in HLF). A smart contract (SC) is a collection of business rules that are shared

and validated collectively by a group of stakeholders [7]. Such smart contracts help

execute business processes in an automated and trusted manner. Based on the

9

business logic, several functions can be defined within a smart contract. When a

client issues a transaction request, the smart contract is invoked on the peers. Thus,

a transaction is a request to the blockchain to execute a function on the ledger,

which is implemented as a chaincode. Unlike other blockchain platforms (such as

Ethereum) where smart contracts are written in a specialized programming language,

Fabric supports chaincode in general-purpose programming languages (e.g., Go, Java,

Node.js) running in standard Docker containers [31].

Fabric also supports system chaincodes that are built into peer executable and

have the same programming model as application chaincodes. These are:

• Lifecycle system chaincode (LSCC) - to install/instantiate/update chaincode.

• Endorsement system chaincode (ESCC) - to endorse a transaction.

• Validation system chaincode (VSCC) - to validate transaction’s endorsement

set against its endorsement policy.

• Configuration system chaincode (CSCC) - to manage channel configuration.

Further details are available in the software documentation. During the transac-

tion life-cycle, the peers invokes the system chaincode corresponding to each life-cycle

phase. The default system chaincodes work fine out-of-the-box but can be customized

by the organizations running the Fabric platform based on their requirements. The

most prominent one to be customized is the VSCC.

2.1.2 Consensus

The fundamental building block for a distributed ledger system is the distributed

consensus process. The consensus process ensures that all the transactions in the

network are agreed upon and executed serially.

It is worth highlighting the difference in the consensus process for a public

blockchain network such as Bitcoin versus a permissioned blockchain network such

10

as Hyperledger Fabric. In a public network, any one can join the network, which

induces the risk of Sybil attack [32]. Bitcoin resolves this by making it computa-

tionally expensive for a peer to propose a new block of transactions (a process called

“mining”). This approach is called proof-of-work (PoW) where each peer needs to

find the right random number (nonce) in the block header such that the SHA-256ˆ2

hash value will have a defined high number of leading zeroes [33]. In a permissioned

network, all the participants are whitelisted and bounded by strict contractual obli-

gations to behave “correctly”, and hence there is no need for a costly consensus

process [5].

Hyperledger Fabric v0.6 used a popular consensus protocol called Practical Byzan-

tine Fault Tolerance (PBFT). We discuss relevant details in Section 5.1. For Fab-

ric V1, the latest release of Fabric at the time of writing this thesis (v1.2) only sup-

ported a crash-fault tolerant consensus using Kafka. More details in Section 2.3.6.

The development of a Byzantine-fault tolerant consensus for Fabric V1 is underway1.

2.2 Hyperledger Fabric v0.6

2.2.1 System overview

VP

VP

VP

Clients

VP = Validating Peer

*

* = Leader

Clients

Clients

Clients

VP

Figure 2.1: System model of a Fabric v0.6 network with four validating peers (VPs)

1 https://lists.hyperledger.org/g/fabric/topic/22676649

11

https://lists.hyperledger.org/g/fabric/topic/22676649

Leader
Validating Peers

(non-leaders)
Clients

Validating Network
(Peers + Leader)

…

Order TX Batch

Create TX Batch

Pre-prepare

Prepare

Prepare

Commit

Commit

3-phase protocol (PBFT) starts

3-phase protocol (PBFT) ends

Execute TX Batch

Append new block to chain

…

Figure 2.2: Transaction sequence diagram on Hyperledger Fabric v0.6

Consider a simple network (Figure 2.1), where four institutions would like to have

a distributed ledger of transactions shared between them. In blockchain terminology,

each of these institutions is a Validating Peer (VP). One of the validating peers is

elected to be the leader (marked with ∗). The leader changes periodically or in

certain situations as described later.

The clients make transaction requests to their respective institutions via their VP.

The VP validates the transaction and then broadcasts this transaction to other VPs

via a secure link, logically indicated by the dashed arrow in the figure. Figure 2.2

provides another view of this process, where the first column represents all the clients

on the network, and the second column represents the collection of VPs and leader.

The transactions between the leader and VP are shown in the third and fourth

column respectively. The clients send transactions to the validating network, which

are ordered and batched together as a block by each VP. After a few seconds (defined

12

as batch timeout) or after a set number of pending transactions (defined as batch

size), the leader creates a block of the pending transactions, maintaining order by

timestamp. The leader then broadcasts this candidate block to other VPs to obtain

a consensus on the block. This consensus is achieved using a three-phase protocol

such as PBFT [11], which we discuss in detail in Section 5.1.

2.2.2 Data structures

... ...

Transactions

Hash of previous block

Hash of world-state

(Distributed) Ledger of Transactions (Distributed) World State

Key Value

... ...

...

Block
n-1

n

Block
n+1

Figure 2.3: World State and Ledger of transactions in Hyperledger Fabric v0.6

HLF maintains a global state across all the peers using a versioned key-value

store (KVS) (called world state) and the ledger, as shown in Figure 2.3. The state

of each chaincode can be represented as a collection of key-value pairs. The world

state of a peer refers to the ensemble collection of states of all chaincodes. Thus

the key for the world state is provided as {ChaincodeID, ckey}, where ChaincodeID

refers to a unique chaincode deployment, and ckey is a unique key corresponding to

the chaincodeID. Before recording block onto the ledger, we need to compute the

cryptographic hash (crypto-hash) [34] of the world state observed by a peer. Since

this is an expensive operation, world state needs to be organized in a way that enables

efficient computation of crypto-hash. Following section describes the implementation

details of the world state.

2.2.3 Block Execution process

Block execution process includes executing individual transactions using its corre-

sponding chaincode, update the results in the world state corresponding to the chain-

13

code, and finally add the block to blockchain and update world state on the ledger.

A block to be added to blockchain contains the list of transactions, the hash of

the transactions after execution, hash of the previous block in the chain (previous-

BlockHash), and hash of world state after executing all transactions in the block.

Note that only the transaction headers are included in the block for compactness

[35]. Following is the prototype of the message Block [35].

message Block {
ve r s i on = 1 ;
goog l e . protobuf . Timestamp timestamp = 2 ;
bytes t ransact ionsHash = 3 ;
bytes stateHash = 4 ;
bytes previousBlockHash = 5 ;
bytes consensusMetadata = 6 ;
NonHashData nonHashData = 7 ;

}

message BlockTransact ions {
repeated Transact ion t r a n s a c t i o n s = 1 ;

}

To calculate previousBlockHash, the block is first serialized using Protocol buffers

library [36], and then the hash is calculated using SHA3 SHAKE256 algorithm [35].

The transactionsHash and stateHash are computed after executing all the transac-

tions in the block. Both are computed as the Merkle root hash (next paragraph).

Bucket tree is one of the implementations for organizing the world state [35]. In

this method, the world state is stored in a hash-table consisting of pre-defined no.

of buckets (numBuckets). A hash function (not a crypto-hash) determines which

bucket number contains a given key. These buckets form the leaf nodes of the tree.

At the next level, the pre-defined no. of nodes (defined by maxGroupingAtEachLevel)

are grouped. This process continues for constructing the next higher level until the

root node is built. To compute the crypto-hash of the world-state, a Merkle-tree

[37] is modeled on top of buckets of the hash table [35]. First, the contents of the

14

leaf-node buckets are serialized (described in detail in [35]), and then the crypto-

hash of leaf-node buckets are computed. For upper-level nodes, the crypto-hash of

lower-level nodes are serialized, and crypto-hash is calculated. Finally, the crypto-

hash of the root node is considered as the crypto-hash of the world state. Note

that the bucket tree’s depth (numBuckets) and breadth (maxGroupingAtEachLevel)

can have different implications on the performance cost and resource demanded of

various system resources.

Fabric’s peer-to-peer communication is built on the Google protocol remote proce-

dure call (gRPC) [38, 35]. It allows bi-directional stream-based messages. It utilizes

Protocol Buffers (protobuf) to serialize data structures for transfer between peers.

The gRPC is also used in communication between VP and its deployed chaincode

container. Chaincode container has a shim layer to handle message protocol between

chaincode and VP using protobuf messages.

Based on our understanding from the documentation [35] and reviewing the DE-

BUG logs messages generated in the VP, we summarize the major steps taken dur-

ing the block execution in the perfect-world case. First, the VP verifies whether

the chaincode corresponding to the transaction is already invoked. Then the chain-

code sets its security context, and then triggers the transaction that consists of a

sequence of get state and put state messages to the VP via the shim layer. Thus

chaincode queries for values of specific assets from the world state, then updates

the value and puts them back to the world state. During these interactions, the

bucket-tree module keeps track of the leaf-node buckets that have changed. Then,

crypto-hash is computed for the transaction block. These steps are run in a sequence

for all the transactions on the block. After all transactions are over, the hash of the

block is computed. Next, the bucket tree computes the crypto-hash for all the leaf-

node buckets in the world state that were modified by the transactions. Then the

crypto-hash is computed for the next-level parent buckets corresponding to leaf-node

15

buckets, and this process is repeated until the root node’s crypto-hash is computed.

Next, the VP stores the key-value pairs that were changed during the transactions

in persistent storage. Finally, the block is committed on the ledger.

2.3 Hyperledger Fabric V1

The architecture of many smart-contract based blockchain platforms resembles closely

to the traditional state-machine replication approach [39]. These systems imple-

ment active replication: first, the consensus protocol orders the transactions and

propagates them to all peers; second, each peer executes all the transactions sequen-

tially. This can be called an order -execute architecture [22]. Examples are Ethereum,

Tendermint (http://tendermint.com), Chain (https://www.chain.com), Quorum

(https://www.jpmorgan.com/global/Quorum) and HLF v0.6. However, this archi-

tecture suffers from several limitations that made the real-world business use cases

hard to implement [12, 22].

• Consensus is hard-coded within the platform and cannot be changed as per

requirements;

• Application needs to use the same trust model as that provided by the under-

lying consensus mechanism (such as f “ tpn´ 1q{3u in case of PBFT);

• All smart contracts need to be loaded on all peers, which made confidentiality

hard;

• All transactions were executed on all peers, which resulted in significant per-

formance decay; Also complex measures required to prevent DoS attack such

as Gas in Ethereum;

• Non-deterministic execution in a smart contract can take the entire system

down.

The new architecture, termed Fabric V1 here, separates the execution of transac-

16

tions (via SC) from the ordering of transactions. The transaction flow follows three

steps: a) execute a transaction on a subset of peers, which endorse the transaction;

b) order the transaction using a consensus protocol; c) validate transaction follow-

ing the application-specific trust assumption, but prevent concurrency-related race

conditions. These three steps can be performed on separate peers, thus improving

the concurrency significantly.

This fundamental shift from the state-machine replication approach has several

advantages, including better scalability, new trust assumptions for transaction val-

idation, support for non-deterministic SC, and using modular consensus implemen-

tations [12, 22]. Thus, Fabric V1 follows an execute-order -validate architecture [22],

where transactions can be executed even before there is a consensus on its ordering.

It follows a hybrid replication of active and passive replication. It follows passive

replication, whereby transactions are executed by a subset of peers independent of

other transactions. It follows active replication, whereby transactions are committed

on the ledger only after reaching consensus on the transaction order. This hybrid

replication is the heart of the Fabric V1.

Let us introduce some of the key aspects of the system.

2.3.1 Nodes

A blockchain network consists of many nodes communicating with each other to

collectively process transactions. A node is a virtual entity, in the sense that it could

be running on physical hardware, or a virtual machine or in a container. Multiple

nodes can be managed by a single entity running on the same physical hardware.

Since HLF is a permissioned network, all nodes that participate have an identity

provided by the membership service provider (MSP), associated with an organization.

There are three types of nodes in Fabric V1.

17

O

O

O

O

C

E

E

E

E

E

C

E

Figure 2.4: Hyperledger Fabric V1 network with various nodes

Peers

Peers execute transactions and maintain the distributed ledger. By default, all peers

are committers, thereby receiving ordered state updates in the form of a block of

transactions from the ordering service, and maintaining the ledger. Upon receiving

a new block, the peer validates the transactions, commits the changes on the local

copy of the ledger and appends onto the block on the blockchain. Peers can take

up an additional responsibility of endorsing transactions, thereby called endorsers.

An endorser simulates the transaction by executing the smart contract (SC) (called

chaincode in HLF) and appending the results with its cryptographic signature (called

endorsement) before sending it back to the client. Note that a single peer node can

be both an endorser and committer.

Each organization can have multiple peers deployed, where one of the peers is

configured to be an anchor peer. This anchor peer receives the blocks from the

ordering service and propagates them to the other blocks via the gossip protocol.

Note that chaincode (along with its endorsement policy) is deployed on a subset

of peers, and only those peers are endorsers for relevant transactions.

18

Orderers

The orderers order all the transactions in the network, propose new blocks and seek

consensus. The collection of orderers form ordering service. Further details are

discussed in Section 2.3.6.

Client

Clients are entities that act on behalf of an end-user. They send transaction proposals

to peers, coordinate their execution results, verifies if the transaction execution is

valid and that it satisfies the endorsement policy, and finally sends the endorsed

transaction to the ordering service. A client also connects with the peer belonging to

its organization to receive notifications about committed transactions. HLF currently

supports client software development kits (SDKs) in Golang, Node.js, Java, and plans

to support more programming languages in the future.

2.3.2 Data Structures

HLF maintains a global state across all the peers using a versioned key-value store

(KVS) and the ledger, as shown in Figure 2.5.

... ...

Transactions

Hash of previous block

(Distributed) Ledger of Transactions (Distributed) State Database

Key Value

... ...

...

Block
n-1

n

Block
n+1

1
1
1
0
1

Figure 2.5: State database and Ledger of transactions in Hyperledger Fabric V1

Key-value store (KVS)

A versioned KVS (called Peer transaction manager (PTM) in [22]) maintains the

latest system state. It stores tuple in the form (key, val, ver) where keys are names

and values are arbitrary blobs. Fabric V1 provides two implementations for KVS:

19

an embedded LevelDB key-value database written in Go2 and a client-server model

database called Apache CouchDB3. The key-value store is read by the chaincode

using get() operation and state updates are proposed by transactions using put()

operation. The version numbers increase monotonically. The KVS is partitioned by

the chaincode. Thus only transactions belonging to a certain chaincode may modify

the keys belonging to its chaincode.

Note that the individual peers are responsible for maintaining their state and not

the orderers or the chaincode or the client. In case a peer misses a block delivery

from the ordering service and goes out of sync, it can request for the missing blocks

using the deliver() call.

Ledger block store

The ledger provides a verifiable history of all the state changes (whether valid or

invalid) that occurred during the operation of the system. The ordering service

sends a new block of transactions with a block sequence number and the hash of the

previous block. Within each block, the transactions are ordered. Thus the ledger is

an ordered hash chain of blocks of (valid or invalid) transactions. The ledger imposes

the total order of transactions committed across the system. Unlike other blockchain

platforms, a transaction in a block does not guarantee that it is valid. Perhaps a

previous transaction (included in the previous or even the same block) updated the

state before the current transaction and hence invalidated the current transaction.

This validity of transactions is maintained by each peer as a bitmask and recorded

in the local copy of ledger as well. Note that this bitmask is not shared with other

peers or the ordering service.

2 https://github.com/syndtr/goleveldb

3 http://couchdb.apache.org/

20

2.3.3 Transactions

In both Fabric v0.6 and V1, there are two types of transactions: Invoke and Query.

Invoke transaction executes the specified function along with input parameters. It

may involve reading and modifying the state database and return output as success or

failure. Query transaction executes the specified function, which returns the peer’s

current state. Thus only invoke transactions modify the state of the distributed

ledger.

The transactions need to be “endorsed” by a subset of peers before it can be

recorded in the ledger. An endorsement is a process of simulating the transaction

with the client provided inputs against the current version of the state database, and

record the outcome (success/failure) along with the readset (the version of the keys

read by the transaction) and writeset (updated values for the keys). The subset of

peers responsible for providing the endorsement is fixed at the time of installing the

specific chaincode. The client can obtain this list from its peer. A client itself is

responsible for seeking endorsements on the transaction it is proposing, such that it

satisfies the endorsement policy.

Endorsement Policy

The endorsement policy is a reflection of the business logic. It is expressed as mono-

tone logical expressions that evaluate to TRUE or FALSE. For example, endorsing set

OR(‘Org1.member’,‘Org2.member’) means that endorsement from any peer from

Org1 or Org2 would suffice. An endorsement policy can be expressed as an arbitrary

combination of AND, OR, and k{n expressions, such as OR(Org1, Org2) AND (2/3

of Org3, Org4, Org5). Weights can also be attached to the organizations, and a

majority of the total weight can be considered as endorsement approval. The list of

endorsing peers and the policy corresponding to a chaincode can be modified only

by a system administrator. Thus, endorsement policies reflect the application-level

21

trust model.

2.3.4 Transaction Flow

Endorser

Committer

Peer 0

Endorser

Committer

Peer 1

SDK

Client

O O

O O

Ordering Service

Blockchain Network

SC1

SC2

SC1(2) (2)

(3) Sign & send to Client

(1) Transaction

(4) Send to Orderer

(5) Orderer sends new block to peers

(6) (6)

Endorsement
Sign

P0

Tx
Endorsement

P0

Endorsement
P1

Sign
C1

TxProposal

Simulate Tx

Validate &
Commit Tx

TxProposal

Endorsement
Sign

P1

Figure 2.6: Transaction flow on Hyperledger Fabric V1 with 2 peers and ordering
service running a single channel

O
rderin g S

ervi ce

Client Peer 0 Peer 1

1

2

2

34

5

6

Commit

Tx. proposal

Tx. simulation
& endorsement

Tx. proposal response

Endorsement collection
& broadcast

Block generation & deliver

Validation

5

4

ACK

VSCC validation

MVCC validation

Ledger write

Figure 2.7: Transaction sequence diagram on Hyperledger Fabric V1

Let us consider a Fabric network in Figure 2.6 with the corresponding transaction

sequence diagram in Figure 2.7. In this example, each peer represents their respective

22

organizations (say Org0 and Org1). The transaction flow is described as follows.

1. The client sends a transaction proposal (TxProposal) to the peers defined by the

endorsement policy (all running the same smart contract SC1). This proposal

consists of clientID, payload, and transactionID, along with a cryptographic

signature of the client on the transaction header. The payload contains the

chaincodeID, operation and input parameters.

2. Each peer simulates the transaction execution by invoking the corresponding

SC (say SC1 in this case) with the user inputs against the local key-value

state. The SC runs in a container isolated from the peer. After simulation, the

endorser produces the read-set which represents the version numbers of keys

read by SC, and write-set which represents the key-value pairs updated by the

SC.

3. Each peer sends to the client the endorsement message containing the result,

read-set, write-set, and metadata, where the metadata includes transactionID,

endorserID, and endorser signature. This message is signed by the peer’s cryp-

tographic signature using ESCC.

4. The client waits for endorsements from peers until it satisfies the endorsement

policy of the transaction and verify that the results received are consistent.

The client then prepares the transaction containing payload and the set of

endorsements received from the endorsing peers and sends it to the ordering

service. This operation is asynchronous, and the client will be notified by its

peer when the transaction is successfully committed.

5. After a few seconds (called block timeout) or after a set number of pending

transactions (called block size), the ordering service creates a block of the pend-

ing transactions, maintaining order by timestamp. The ordering service does

23

not inspect the contents of the transaction. The block is appended with a

cryptographic signature based on the block header and then broadcasted to all

the peers on the same channel.

6. When the peer receives a block of transactions, it evaluates transaction en-

dorsements against its endorsement policy in parallel (using Validation Sys-

tem Chaincode (VSCC)). The ones that fail are marked invalid. Next, for

each valid transaction, it performs multi-version concurrency control (MVCC)

[40, 41] (called read-write check in [22]), which means it serially verifies if the

read-set version matches the current version on KVS (assuming the previous

transactions are committed). The validity of transactions is captured as a bit

mask and appended to the block before the block is appended on the local

ledger. Finally, all the write-sets are written to the local KVS, and the state

transition is thus completed. The peer notifies the client about the success or

failure of the transaction.

2.3.5 Channels

So far, we described the HLF running a single blockchain network. In a large busi-

ness network, a subset of peers might want to conduct business transactions privately

without letting other peers know about the details of the transactions. Such trans-

actions could be recorded on the blockchain network as well, albeit as a separate

ledger. This ledger would have a separate chain of transactions as well as state

database. This concept is known as a channel in HLF. This subset of peers would

request the ordering service to create a separate channel for them and install a dif-

ferent chaincode capturing the business logic. Thus channels partition the state of

the blockchain network. Ordering service maintains a separate order of transactions

for each channel.

24

2.3.6 Ordering Service

The ordering service provides a shared communication channel between clients and

peers. Once a transaction’s endorsement policy is satisfied, the client sends the

transaction payload to the ordering service, which orders the transactions into blocks

and delivers them to all peers. Each block is delivered with a sequence number and

hash of the previous block. Although the service could have dispatched individual

transactions, it would incur high overhead due to hashing and transmission. Hence

the ordering service groups transactions into blocks.

The ordering service guarantees an atomic delivery of all endorsed transactions,

which means the service outputs the same message to all connected peers in the same

logical order. The ordering service provides the following guarantees:

1. Safety (consistency guarantees): As long as peers are connected for sufficiently

long periods of time (intermittent disconnections are ok as long as the peers

restart and reconnect), the ordering service delivers the transactions in the

same sequence to all peers and carry identical content for the same sequence

number. The delivery also contains the cryptographic hash of the previous

delivery.

2. Liveness (delivery guarantee): If the submitting client does not fail, the or-

dering service guarantees that each connected peers eventually receives each

transaction from the ordering service.

The Fabric network uses a built-in gossip service to deliver blocks to a large

number of peers efficiently. The ordering service delivers blocks to the anchor peer

of an organization, which disseminates them further to other peers.

Note that the ordering service neither maintains any state, nor validate or ex-

ecutes transactions. Thus the transaction execution and validation are completely

25

separated in a Fabric network.

The ordering service in Fabric V1 is designed as a pluggable component. At

the time of writing this thesis (latest release was v1.2), two implementations were

supported: solo and Kafka-based. Solo consists of a single node with no fault tol-

erance and intended to be used only during the software development phase. The

Kafka service is based on Apache Kafka, which is a distributed, scalable, publish-

subscribe messaging system [42]. Apache Kafka works in conjunction with Apache

Zookeeper [43], which coordinates between the nodes of the Kafka service, thus en-

abling crash fault-tolerance. Thus Kafka-based ordering service provides a scalable

crash fault-tolerant service for ordering messages in the Fabric that is used in pro-

duction systems.

Kafka-based Ordering Service

The Kafka-based ordering service consists of a set of Ordering Service Nodes (OSN)

and a Kafka cluster with a corresponding Zookeeper ensemble [44]. The OSN nodes

act as the interface for the clients. These nodes perform client authentication and

relay the client transaction to the Kafka cluster so that it will be added in a future

block. These nodes also allow clients to modify the configuration of an existing

channel or to setup a new channel. The OSNs are also responsible for delivering

blocks of transactions to the peers. In case a client has missed a previous block, it

can ask the OSN node to redeliver it.

An ordering service consisting of four OSN nodes and a Kafka cluster is shown in

Figure 2.8. Clients send transactions to their respective OSN node, which authenti-

cate the client and forwards the transaction to the Topic corresponding to the channel

for which the client sent the transaction. A Kafka cluster can have multiple topics,

and each topic can have multiple partitions. The messages are written in a parti-

tion in an append-only manner; hence it becomes an ordered immutable sequence of

26

Kafka cluster
+ ZooKeeper ensemble

OSN
1

OSN
2

OSN
4

OSN
3

Client

m
(off:28)

n
(off:29)

p
(off:30)

Ledger for channel A

Block x (m,n,p)

Block x+1 (q, ...)...

Deliver()

...

Broadcast (TX p)

Client

Broadcast (TX m)

Client

Broadcast (TX n)

Peer BPeer B

Figure 2.8: Kafka-based ordering service for Hyperledger Fabric V1

TX m
(from OSN1)
offset = 28

TX n
(from OSN2)
offset = 29

TX n
(from OSN4)
offset = 30

... ...

Topic

Partition 0
TTC x

(from OSN3)
offset = 31

Figure 2.9: Transactions corresponding to a channel in a single topic/partition

messages (Figure 2.9). In HLF, each channel has a separate topic consisting of only

partition 0.

A block is cut when one of the following conditions are met: a) maximum number

of messages for each block (defined by batch size); b) passage of time (defined by

batch timeout); c) block has reached a maximum size (defined by PreferredMaxBytes).

Since the messages are appended, cutting a block based on count or size is straight-

forward. However, to cut blocks based on timeout, the OSNs need to synchronize to

ensure all of them contain the same set of transactions. This is done by sending a

“time to cut block X” (TTC-X) in the same partition. Multiple TTC-X transactions

could be sent for the same block X by multiple OSNs. While consuming the messages

27

from the partition, each OSN considers only the first TTC message for a block as

valid. Each OSN then records these group of messages (transactions) on its private

ledger.

The block of transactions is delivered to the peers based on the offset number.

Thus the requests for the block does not need to go all the way to the Kafka cluster,

making it easier for the OSNs to manage it. In case a peer misses out on an arbitrary

block number, the OSN can efficiently deliver the block from its private ledger with-

out seeking the messages again from the Kafka cluster. Otherwise, the OSN nodes

would have had to save the offset numbers corresponding to each block, which could

slow down the delivery. The OSNs thus maintain a ledger for each channel.

28

3

Performance Metrics for Blockchain Networks

To evaluate the performance of a computer system, we need to define clear and crisp

performance metrics. Blockchain brings unique features to the systems, that make it

necessary to define the performance metrics applicable to this class of systems. First,

blockchain networks are implemented without a central authority or repository. Thus

the data (and transaction) is replicated across multiple peers belonging to different

organizations, rather than mere replicas belonging to a single organization. It im-

plies that the data (and transaction) is visible to various organizations at different

times. Second, as opposed to individual transactions, transactions are usually com-

mitted in blocks. Each block of transaction undergoes a consensus process before the

transactions are committed and finalized. Complex workflows make it challenging to

define when a transaction starts and completes. HLF V1 distinguishes itself one step

further, where different nodes perform unique functions to process each transaction.

Since blockchain networks are relatively new, for organizations implementing

blockchain networks, their primary goal is the performance evaluation of a system,

to ensure that it has sufficient capabilities to satisfy the application’s expected use-

cases. As the technology progresses and the system/application software releases are

29

more mature, the goal of performance evaluation will be to measure the performance

improvement and degradation over releases and in different deployment configura-

tions. Eventually, we can prepare benchmarks that define a standard procedure to

assess the performance of a blockchain network and compare it with other systems

in a standardized way.

The work presented in this chapter was done in collaboration with the Perfor-

mance & Scalability Working Group (PSWG)1 hosted by the Hyperledger Project

under the Linux Foundation. The participants were researchers in the blockchain

domain as well as practitioners working on the development and deployment of

blockchain platforms in various Information Technology (IT) companies. At the

time of writing this thesis, the first release of this document has been published [45].

In this document, my main contribution was to provide detailed examples for trans-

action latency and throughput based on finality condition including the figures and

plots (Appendix A in [45]). I also contributed to the terminology section, provided

relevant citations, and helped proof-read the document.

In this chapter, we discuss performance metrics applicable across the broad class

of blockchain networks. We refine the metrics for the specific class of blockchain

platforms as appropriate and provide relevant examples. Within each metric, we

also share the related metrics discussed in the literature. We focus our performance

metrics at a system-level, but we share examples from specific application domains

where possible.

3.1 Performance Evaluation Setup

Before we get into the depth of the performance metrics, let us provide a representa-

tive setup for performance evaluation of blockchain networks, as shown in Figure 3.1.

The ‘Blockchain network under test’ is the collection of nodes that run the net-

1 https://lists.hyperledger.org/pipermail/hyperledger-perf-and-scale-wg/

30

https://lists.hyperledger.org/pipermail/hyperledger-perf-and-scale-wg/

1 2 n... 1 2 m...

Load-generating clients Observing clients

Test Harness

Blockchain network under test

Peer Peer

Peer Peer

PeerPeer

Figure 3.1: Representative setup for performance evaluation of a blockchain net-
work

work. It corresponds to the ‘system under test’ in a performance evaluation. It

includes the collection of hardware, software, network and configuration of each re-

quired to run and maintain the network [45].

The ‘Test Harness’ is the collection of nodes that execute the performance eval-

uation. These nodes are essentially clients, that can play two broad class of roles.

Load-generating clients submit transactions on behalf of the end user. Thus they

generate workload. Usually, an automated test script is used to generate workload.

Observing clients query the peers or receive notifications regarding the status of

transaction completion. The test harness also collects and analyzes the required

datasets to estimate performance metrics.

The interface between the client and the blockchain network can range from a

simple Representational State Transfer (REST) interface (e.g., Hyperledger Sawtooth

Lake) to a comprehensive Software Development Kit (SDK) (e.g., Fabric). Thus a

client can be either stateless or stateful.

Let us consider an example of a Fabric V1 network (Figure 3.2). A detailed

31

OSN

Ordering Service

Kafka OOZK

1 2 n... 1 2 m...

Load-generating clients Observing clients

Test Harness

Fabric SDK

...

OSN...

Peer*

Peer

Peer*

Peer

Peer* Peer

Org 0

Org 1

Org 2

Hyperledger Fabric network under test
Figure 3.2: Performance evaluation of a Hyperledger Fabric V1 network

example is shared in Section 6.1. Due to Fabric V1’s unique architecture, the SUT

includes a heterogeneous class of nodes, encompassing ordering service and the peer

nodes. One unique aspect of Fabric is that the SDK is deeply involved in the complex

transaction flow. It raises a question whether to include it as a part of the SUT.

We recommend including it in the SUT since it is considered an independent node

in the Fabric architecture [22]; also different implementations of client SDK could

have different performance implications. Although Caliper currently supports only

Node.js SDK, it can support multiple client SDKs in the future.

The individual/organization presenting the performance evaluation results of

their blockchain platform and/or application is responsible for sharing all the en-

vironment details to ensure that the results are reproducible. Appendix B lists the

key aspects to consider while presenting the environment details.

32

3.2 Transaction Latency

Transaction latency is the time taken between when the transaction is submitted

and when the transaction is confirmed committed across the network. This latency

includes the propagation time and any settling time due to the consensus algorithm.

In short, transaction latency is the amount of time taken for a transaction’s effect to

be usable across the network [45].

We need to consider two aspects:

1. Number (or %) of peers at which the transaction is observed to be settled

2. Percentile - Percentage of observations equal to or below which the measure-

ment is valid

Our definition is motivated by the definition (ε, δ) consensus delay proposed by

Eyal et al. in [46], which is the consensus delay at which ε fraction of peers agree on

the state of the state machine in δ-percentile cases.

Let us consider a few examples. Suppose we evaluate the performance of a four

peer blockchain network using Hyperledger Caliper (or similar tool) which observes

measurements only at one peer, and reports average transaction latency as 5 sec.

Then we would report our transaction latency as 5 sec. @ (1/4, average).

With a more sophisticated performance evaluation tool, let’s say we measure the

performance at 3 out of 4 peers, so we can consider our transaction confirmation time

as the time when a transaction is complete at 3 out of 4 peers. If the tool reports

90th percentile transaction latency as 8 sec, then we would report our transaction

latency as 8 sec @ (3/4, 90th percentile).

Transaction latency is most popularly reported as average latency, which is cal-

culated as follows:

Average Transaction Latency =
ř

transaction latency / Total committed transactions

33

For a blockchain platform under test, the presenter of the results must also clearly

define “when” the transaction is considered complete. E.g., Caliper considers a Fabric

transaction complete when it receives an event notification from the peer. However,

if we were to gather this information from logs, we would consider it complete when

the write-set changes are written to the key-value database.

It is worth pointing out that committed transactions should only include valid

transactions. Note that some platforms such as Fabric record all the transactions that

were included in a block by the ordering service, even though they might be rejected

later in the validation phase. Section 3.4 elaborates on the reasons for transaction

failures in permissioned blockchain networks.

Let us refine the metric further for three classes of blockchain networks based on

the finality condition of the consensus protocol and the network topology.

1. Case 1: Immediate finality

Clients

Peer 0 *

Peer 1

Peer 2

Peer 3

...

Leader prepares block

Pre-prepare Prepare Commit
Block execution
& commit

Transactions
committed at all peers

* = Leader Transactions
committed at 75% peers

Block Consensus

Figure 3.3: Transaction flow of blockchain platforms using PBFT consensus

Systems employing voting-based consensus have immediate finality. Once a

transaction is committed, the state is guaranteed to be irrevocable. However,

the transactions would commit at different peers at different times due to two

reasons. First, different peers would receive blocks of transactions at different

times due to block propagation time. Second, each peer would execute and

34

commit transactions at a different rate based on its performance capabilities

and how busy it is. We visualize this in Figure 3.3. As described in the main

text, the transaction confirmation time can be defined based on the number

(or %) of peers at which the transaction confirmation is observed.

2. Case 2: Probabilistic finality and known network topology

Clients

Peer 0

Peer 1

Peer 2

Peer 3

...

All peers
preparing block

...

=> block execution & commit

Figure 3.4: Transaction flow of blockchain platforms using lottery-based consensus

Systems using lottery-based consensus have probabilistic finality. In most per-

missioned deployments, the topology will be known. In this case, a transaction

is confirmed only when multiple nodes reach the same state, visualized in Fig-

ure 3.4. Thus we can use the metric defined above.

3. Case 3: Probabilistic finality and unknown network topology

Some of the prominent examples are public blockchain networks such as Bitcoin

and Ethereum that run in an untrusted environment with anonymous miners.

A client has access only to limited peers. In this case, a transaction is considered

final and irrevocable only when enough blocks have appended the chain. For

Bitcoin and Ethereum, it is considered to be 6 and 12 respectively [2, 47].

However, this figure needs to be analyzed for the blockchain network under

test. It can be estimated by recording the block in which each transaction

shows up and doing a percentile analysis, so we can estimate the percentile of

35

transactions committed up to a certain block, as shown in Figure 3.5 (Ref. [48]).

An organization can use this metric for risk assessment of their transactions.

0.00

0.25

0.50

0.75

1.00

111 222 333 4444444444444 555555555 6 7 8
Block Number

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Time (sec.)

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Figure 3.5: Transaction confirmation probability for blockchain network with un-
known topology

For such networks, the latency can be reported as follows. For example, a

transaction submitted at the time when block x is the highest, can be found in

block px` 2q with 50th percentile chance, in block px` 5q with 90th percentile

chance, in block px ` 7q with 99th percentile chance. Thus the transaction

latency is 2 blocks @ 50th percentile, 5 blocks @ 90th percentile, and 7 blocks

@ 99th percentile respectively. Since the finality is measured in terms of the

number of appended blocks, it is more intuitive to present latency in terms of

the number of blocks rather than time.

How you choose to report your results depends mainly on your application and

its domain. If you are building a blockchain network for latency-sensitive IoT appli-

cation, you might want to consider reporting latency at a higher percentile (say 90).

If your application is in banking/finance domain where the transaction needs to be

confirmed at a high percentage of nodes before its considered complete, you might

want to take measurements at a large set of peers.

36

Related definitions

One relevant definition in the literature is the X% block propagation delay [21],

which is defined as the time to deliver blocks to X% of the peers (say 50% or 90%).

This is a critical metric for large overlay networks such as Bitcoin. To summarize

the observation from a collection of transactions, this metric implicitly assumes a

summary statistic such as percentile or average. Note that this metric only refers

to the latency in block propagation, which is a significant component of the trans-

action latency. We consider this a useful metric to describe the blockchain network

environment (Ref. Appendix B).

In some blockchain platforms such as Fabric, it is useful to measure the latency

by each transaction phase. As proposed in [22, 41], we can divide transaction latency

into Endorsement, Ordering, and Validation phases. Within validation, we can split

the block latency into VSCC validation, MVCC validation, and ledger update. For

example, please refer to Section 6.6.

3.3 Transaction Throughput

Transaction throughput is the rate at which the blockchain network commits valid

transactions in the defined period of time [45]. Note that this is the rate across the

network, which means the discussion regarding the number (or %) of peers across

which it is observed to be committed is still applicable. Thus,

Transaction throughput := Total committed transactions / Total time @ (% of

committed nodes)

Throughput is commonly expressed in transactions per second (TPS). Unlike la-

tency, we do not need a summary statistic like percentile or average, since throughput

intuitively acts as a summary statistic itself.

As discussed earlier, we should consider only valid transactions in our measure-

37

ments. Thus the throughput is the same as goodput.

Related definitions

For blockchain systems, all the transactions are committed in “blocks”, hence through-

put can be considered as (block size) / (block interval), where block size could be

no. of transactions or in size (kB or MB), and block interval is the frequency of

generating blocks (1̃0 mins in case of Bitcoin). Since Bitcoin operates on a vast over-

lay network, peers receive blocks in a wide range of propagation times. To account

for the % of peers receiving block by a particular block interval, Croman et al. [21]

propose the metric X% Effective Throughput.

X% Effective Throughput := (block size) / (X% block propagation delay)

where (X% block propagation delay) is as defined earlier.

Let us consider an example. For the Bitcoin network, the average block size

is 540KB and the median block propagation time is 8.7 sec. Thus X% effective

throughput is 62 kBps or 496 kbps [21].

This metric intuitively provides the blockchain network’s capacity as a function

of the network topology, which is useful for planning the average block size and

frequency to maximize the network throughput. Note that this metric implicitly

assumes that the block frequency is fixed, which is a valid assumption for large

overlay networks running lottery-based consensus such as Bitcoin and Ethereum.

However, for networks running voting-based consensus, the block frequency changes

based on the arrival rate, block size, and timeout. For such networks, this metric

would be fixed across different arrival rates, and hence it is not as insightful.

3.4 Scalability & Elasticity

Just like any new computer system, stakeholders of blockchain networks are con-

cerned whether the system would be able to handle high transaction throughput,

38

maintain low transaction latency with increasing workload and increasing number of

peers [49]. Such concerns nessessitates the need to understand the “scalability” of

blockchain networks.

Scalability connotes the ability of a system to accommodate growing volume of

work gracefully and/or to accommodate enlargement [50]. Scalability is a desirable

attribute of computer systems and networks. Since there is no formal definition

of scalability [51, 50, 52], this term is generally misused, which creates confusion.

The presenters of performance analysis results should refrain from calling their sys-

tem/application as “scalable”. Rather, it is useful to present a detailed performance

and scalability analysis study and let the readers decide if the system is useful for

their current and future business use-cases.

In the context of system performance, we define scalability analysis as the pro-

cess of analyzing system performance by scaling key dimensions. In the context of

computer systems, dimension denotes key aspects of the system and applications

whose scaling affects system behavior. For distributed ledger systems, important

dimensions include the number of peers, the arrival rate of transactions, peer hard-

ware and software capabilities. Thus, scalability is related to a system’s ability to

accommodate the “scaling” of some dimension [52].

Scalability analysis provides useful insights to all the stakeholders of the system.

To the researchers and developers of the system, it provides useful insights into the in-

ner workings of their system and encourages them to design and implement solutions

that are considered unfeasible today [51]. To the engineers deploying the systems,

it presents the opportunities and challenges involved in expanding the system for

future use-cases.

To understand the cause-effect relationship between the system dimension and

measured output metric, let us consider the scalability framework in Figure 3.6

(adopted from [52]).

39

Scalability
framework

Independent variables Dependent variables

App
lic

at
io

n System

Blockchain

Dep
en

da
bi

lity Security

Performance

Figure 3.6: Scalability framework for blockchain networks

Cause-effect relation can be studied using independent and dependent variables.

Independent variables represent the subset of variables that affect the system be-

havior. For blockchain networks, we can classify them into blockchain, system and

application domain. For example, blockchain domain includes the number of peers,

block size, block frequency, consensus protocol, and placement of peers; system do-

main includes hardware and software capabilities and configuration of the peers;

application domain includes number of smart contracts, size/complexity/memory

footprint of smart contracts. These domains are not mutually exclusive.

Dependent variables represent the qualitative and quantitative output metrics

that are affected by the independent variables. Depending on the metrics for which

the system needs to be optimized, they can also be classified as critical or flexible [52].

However, we prefer to classify them as performance, dependability [53], and security.

For example, performance metrics includes throughput and latency; dependability

includes availability, reliability, performability [28]; security includes stale block rate

[54, 55].

Scalability analysis is conducted by performance evaluation of system by vary-

ing one or more independent variables (dimensions) and measuring the dependent

variables. Ideally, the dimensions are varied between each performance test run.

However, some of the dimensions (like traffic arrival rate) can be varied during a

test run. Such analysis is called elasticity, which can be defined as the ability of

40

application to be scaled at runtime [56]. For elasticity analysis, “scaling speed” can

be measured, which signifies the time taken to scale at runtime [56]. Note that not

all dimensions can be scaled at runtime. In summary, the key differentiator between

scalability and elasticity is whether the dimensions change in between the runs or

during the runs.

Scalability (and elasticity) analysis results are usually presented as a 2D graph,

where the x-axis represents the range of an independent variable, and y-axis repre-

sents the value of a dependent variable. If we find a linear relationship between the

dependent and independent variable, it is tempting to present its slope as a single

numerical result. However, it might not be applicable in all cases.

Related Work

Let us discuss research papers on scalability analysis of HLF. For HLF v0.6, Dinh

et al. [57] studied the changes in throughput and latency with increasing number

of peers and increasing workload. They found that the system fails to scale beyond

16 peers. On further investigation, they found the consensus messages were getting

choked with other messages in the same message queue, resulting in peers getting

stuck during the view-change process of PBFT. Thus scalability analysis highlighted

the poor protocol implementation.

For HLF V1, Baliga et al. [58] measured the transaction throughput and la-

tency by varying the number of chaincodes, number of channels, and number of

organizations per channel (4 to 16). Thakker et al. [41] also measured the trans-

action throughput and latency by varying the transaction arrival rate, number of

channels, number of CPU cores per peer, and the transaction complexity (number

of read-writes in chaincode). They propose additional ideas for scalability analysis,

viz. varying the number of organizations per channel and number of peers per org.

Regarding varying the number of peers/orgs, they observed that endorsement policy

41

plays a critical role. In addition to some of the above dimensions, Androulaki et

al. [22] varied the geographic locations of peers from single data-center to multiple

data centers over a WAN. Overall, HLF V1 is found to scale well with the number

of peers/organizations, channels, and chaincode at a reasonable workload.

Appendix - Transaction Failure

Since different blockchain platforms handle consensus and transaction validation dif-

ferently, it is challenging to align error classes across platforms. Following are the

broad class of reasons why blockchain transactions get rejected [14]:

• Consensus errors

– Validation logic (VSCC in the case of Hyperledger Fabric)

– Policy failure (endorsement policy not satisfied in the case of Hyperledger

Fabric)

• Syntax errors

– Invalid input (smart contract id, unmarshalling errors, and so on)

– Unverifiable client or endorsement signature

– Repeated transaction (due to error or replay attack)

• Version errors

– By version control (readset version mismatch, writeset is unwritable)

42

4

Empiricial Analysis for Hyperledger Fabric v0.6

In this chapter, we provide extensive details of the empirical analysis presented in

our published work [29], where we analyze the block consensus process for HLF v0.6.

We extend our work by providing empirical analysis for the block execution process

as well.

4.1 Experimental Setup

We setup the blockchain network using the IBM’s Bluemix service1. This Platform-

as-a-Service (PaaS) hosted by IBM provides an ability to deploy blockchain service

with four peers in an automated manner. Following are our system configuration

details.

1. Number of validating peers (VP) (n) = 4

2. Maximum number of failing peers (f) = 1

3. PBFT view change timeout = 30 seconds

4. PBFT broadcast timeout = 1 second

1 https://console.ng.bluemix.net/catalog/services/blockchain/

43

https://console.ng.bluemix.net/catalog/services/blockchain/

5. PBFT automatic view change = disabled

6. PBFT batch size = 1000

7. PBFT batch timeout = 1 second

Test Application

We deployed the ‘track and trace’ contract [59] on an IoT Contract Platform [60],

both developed by the IBM Watson IoT team. This application tracks and traces

an IoT device (an asset on the blockchain) deployed in the field. An example is a

surgical kit that needs to be tracked from creation through its use in an hospital.

Its location is recorded at regular intervals and its possesser is recorded upon each

handover. In case the kit is moved outside the perimeter of the hospital campus,

an alert is generated for the security team. In our deployment, the most frequently

occurring transaction is updateAssetSurgicalKit that reads the existing state from

the world state, merges the current state to create a new state, and then execute

rules to raise or clear alerts. Then it stores the new state (along with past few state

updates) to the world state. The transactions are generated by a node-red device

that sends bursts of events to the IoT platform, which maps it to the appropriate

track and trace contract.

4.2 Analysis for PBFT consensus process

4.2.1 Measurements

To measure the time taken to perform the actions captured in our model, we analyze

the log files generated by the peer. After reviewing the log files and the correponding

software source code, we identify the log entries correponding to the key events. A

set of log file entries corresponding to the consensus process between two validating

peers is shown in Figure 4.1, where the validating peer on the left (vp0) is a leader.

Timestamp corresponding to each entry is captured with a nanosecond accuracy but

44

vp0 (*) vp1

(date) 00:35:23.495190: sendBatch -> Creating batch with 3 requests
(date) 00:35:23.495210: recvRequestBatch -> Replica 0 received request batch <digest>
(date) 00:35:23.495248: sendPrePrepare -> Replica 0 is primary, issuing pre-prepare for request
(date) 00:35:23.495313: sendPrePrepare -> DEBU Primary 0 broadcasting pre-prepare for
view=0/seqNo=148319 and digest

(date) 00:35:23.501827: recvPrepare -> DEBU Replica 0 received prepare from replica 1 for
view=0/seqNo=148319
…
(date) 00:35:23.501951: prepared -> DEBU Replica 0 prepare count for view=0/seqNo=148319:
1
…
(date) 00:35:23.501961: maybeSendCommit -> DEBU Replica 0 broadcasting commit for
view=0/seqNo=148319
…
(date) 00:35:23.502878: recvCommit -> DEBU Replica 0 received commit from replica 1 for
view=0/seqNo=148319
….
(date) 00:35:23.502555: committed -> DEBU Replica 0 commit count for
view=0/seqNo=148319: 1
….
(date) 00:35:23.502572: executeOne -> INFO Replica 0 executing/committing request batch for
view=0/seqNo=148319 and digest <digest>

(date) 00:35:23.500788: recvPrePrepare -> DEBU Replica 1 received pre-prepare from replica 0 for
view=0/seqNo=148319
(date) 00:35:23.500815: recvPrePrepare -> DEBU Replica 1 storing request batch <digest> in outstanding
request batch store
(date) 00:35:23.500923: softStartTimer -> DEBU Replica 1 soft starting new view timer for 30s: new pre-
prepare for request batch <digest>
(date) 00:35:23.500972: recvPrePrepare -> DEBU Backup 1 broadcasting prepare for view=0/seqNo=148319
(date) 00:35:23.501128: prepared -> DEBU Replica 1 prepare count for view=0/seqNo=148319: 1
…
(date) 00:35:23.502070: maybeSendCommit -> DEBU Replica 1 broadcasting commit for
view=0/seqNo=148319
….
(date) 00:35:23.507338: recvCommit -> DEBU Replica 1 received commit from replica 0 for
view=0/seqNo=148319

Tx

Tx

Tx

Pr

Pr

Pr

Q

Q

Figure 4.1: Snapshot of logs for block consensus process

shown in microsecond accuracy for brevity. Logs are trimmed for compactness. For

a system running over few weeks with around 800 blocks committed per hour, we

analyze the logs for 50 randomly chosen blocks.

4.2.2 Model parameterization

Our goal is to find the best-fit distribution for the firing time of each SRN transition

in our model in Figure 5.2. Each SRN transition corresponds to a key time-consuming

operation in the system (discussed in Section 5.2). We collect the datasets corre-

sponding to each operation. We consider the following distributions for our dataset:

Exponential, Weibull, Gamma, Hypoexponential (2-stage, 3-stage), LogNormal and

Pareto. We estimate the parameter values for each fitted distribution using Maxi-

mum Likelihood Estimate (MLE) technique. We evaluate the goodness-of-fit using

Kolmogorov-Smirnov (KS) statistic [61] at 5% level for significance. Finally, we se-

lect the distribution with the lowest Akaike information criteria (AIC) [62]. For

reference, we share our R code for probability distribution fitting in Appendix C.

Let us discuss the measurements for each set of model parameters.

45

Time to prepare consensus message for next stage (Op)

We measure this at each stage of the consensus process (as shown in Figure 4.1).

For our detailed model, we can estimate parameters for transitions corresponding to

each stage separately. However, we perform Analysis of Variance (ANOVA) F-test

[63] to see if there is a statistically significant difference in means between the three

groups corresponding to the three set of samples. We find that the null hypothe-

sis for equal means can be rejected (p-value = 6.3e-9). Then we perform multiple

comparisons procedure using Tukey’s Honest Significance Test [63] and find that the

time to process a message in the commit phase is much smalller than that for the

other two phases. There is no statistically significant difference between the samples

corresponding to the pre-prepare and prepare phase. Hence we combine the corre-

sponding datasets and analyze them as a set, finding that Weibull distribution is the

best fit, followed by Gamma and 2-stage Hypoexponential. For Op in Commit phase,

we find 2-stage Hypoexponential is the best fit, followed by 3-stage Hypoexponential

and Gamma.

Time to transmit a message (Tx)

Since the messages could be subjected to queuing delays, measuring the time to

transmit a message (Tx) is more challenging. Since our IoT application generates a

burst of transactions every few seconds, a block gets created with every burst and

completes within the same second. Thus, when the leader sends the pre-prepare

message for a new block, there are no pending consensus messages at any VP from

the previous blocks. For each block analyzed, we measure the time to transmit this

pre-prepare message as a sample for Tx. For messages during the other phases, we

consider them as a valid sample only if they were the first message to reach the peer.

We perform the ANOVA F-test followed by Tukey’s Honest Significance Test and find

no statistically significant difference between the set of samples. We find that Weibull

46

is the best fit, followed by Gamma and 3-stage Hypoexponential. Given our limited

understanding of the size of the messages exchanged, the time to transmit measured

corresponds to the end-to-end delay to transmit message between two peers. Time to

transmit smaller messages is more sensitive to latency than throughput, and the other

way round for larger messages [21]. With sufficient understanding, the transitions

with subscript Tx can be used to model the time to transmission in either case.

Time to process incoming consensus message (Ip)

In our analysis, we consider time to process incoming consensus messages (sub-

script Ip) in the prepare and commit phase as the time between between receipt

of the message and adding them to the prepare/commit count (Figure 4.1). From

the log files ordered by timestamp, we see that such messages are processed serially.

We find that Weibull distribution is the best fit, followed by Gamma and 2-stage

Hypoexponential.

For all the metrics discussed above, we assume the same distribution across all

VPs. This assumption holds well in our blockchain setup on IBM Bluemix, since each

VP is running in a Docker container with the same configuration and are co-located in

the same rack. Table 4.1 provides summary statistics for the datasets discussed above

and time to complete consensus. The empirical and fitted cumulative distribution

functions (CDF) for Tx and Pr (preprepare and prepare stages only) are shown in

Figure 4.2, skipping the distributions that were rejected by the KS test criteria.

4.3 Analysis for Block Execution process

4.3.1 Measurements

A snapshot of the log entries corresponding to the block execution process at one VP

is shown in Figure 4.3. Once the consensus process is complete, the block execution

starts (executeOne). After a few small steps, the VP executes each transaction is

47

0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time to transmit consensus msg. (ms)

C
D

F

Weibull
Gamma
Hypoexp. (3−stage)

Time (ms)
0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time to prepare consensus msg. in pre-prepare, prepare phase

C
D

F

Weibull
Gamma
Hypoexp. (2−stage)
Hypoexp. (3−stage)
LogNormal

Time (ms)

Figure 4.2: Empirical, fitted cumulative distribution function (CDF) for time to
transmit and process consensus messages

Table 4.1: Summary statistics for datasets corresponding to consensus process

Statistic Transmit
(Tx) (ms)

Prepare Consensus
(Op) (pre-prepare,
prepare stages) (ms)

Incoming
process (Ip)
(ms)

Complete
(ms)

Minimum 0.0906 0.0219 0.0126 1.706
1st Quartile 0.5453 0.1068 0.0618 2.823
Median 0.7446 0.2050 0.1009 3.314
Mean 0.7541 0.2321 0.1116 3.492
Std. Dev 0.3730 0.1571 0.0748 1.231
3rd Quartile 0.9403 0.3097 0.1357 3.545
Maximum 1.6280 0.6394 0.3366 8.690

series, by invoking the corresponding chaincode in a dedicated docker container.

Then, the VP needs to compute the crypto-hash of the world state’s root node. The

crypto-hash of the changed leaf buckets is computed, followed by the next level of

nodes where the leaf nodes were changed, and so on, till the root node’s crypto-hash

is computed. Since multiple transactions could have updated the same leaf node,

the total number of buckets updated depends sublinearly on the no. of transactions

executed. From the timestamps, note that computing the crypto-hash of each bucket

takes a noticable time. The time to complete block execution is taken as the time

between entries executeOne and execDoneSync.

Before we parameterize our model, we verified that there is no statistically signif-

icant difference in the block execution times across the four validating peers. Thus,

the results from our model captures the block execution process at any peer.

48

18:02:40.426497: sendBatch -> INFO Creating batch with 1 requests"
<bunch of consensus messages (similar to Figure 4.1) >
18:02:40.429813: executeOne -> INFO Replica 0 executing/committing request batch for view=0/seqNo=292636 and digest
<for each transaction (with TxID)>
 18:02:40.429817: execute -> DEBU Batch replica 0 executing request with transaction <TxID> from outstandingReqs, seqNo=292636"
18:02:40.429895: ProcessEvent -> DEBU Starting new transaction batch" // Executor block corresponding to LedgerStack.Executor()
18:02:40.429899: [crypto] Debug -> DEBU [validator.peer0] Tx confdential level [PUBLIC]."
18:02:40.429906: [chaincode] Launch -> DEBU chaincode is running (no need to launch):
<for each transaction (with TxID)> (timings for the only loop)

18:02:40.429914: [state] TxBegin <TxID>
18:02:40.429951: [chaincode] setChaincodeSecurityContext - setting chaincode security context
18:02:40.429986: [chaincode] HandleMessage -> DEBU <TxID> Handling ChaincodeMessage of type: TRANSACTION in state ready" // Move Tx to state "READY"
18:02:40.430712: [chaincode] processStream -> DEBU <TxID> Received message GET_STATE from shim" // fetch values from world state
18:02:40.430999: [buckettree] newDataKey -> DEBU Exit - newDataKey=[bucketKey=[level=[9], bucketNumber=[<buID1>]]
18:02:40.431798: [chaincode] processStream -> DEBU <TxID> Received message PUT_STATE from shim" // modify and add value to world state
18:02:40.432078: [buckettree] newDataKey -> DEBU Exit - newDataKey=[bucketKey=[level=[9], bucketNumber=[<buID1>]]
…. <two more set of GET_STATE, PUT_STATE operations>
18:02:40.435662: [chaincode] enterReadyState -> DEBU <TxID> Entered state ready"
18:02:40.435669: [state] TxFinish -> DEBU txFinish() for <TxID> , txSuccessful=[true]
18:02:40.435692: [statemgmt] ComputeCryptoHash -> DEBU computing hash on <transaction results>

18:02:40.435747: [buckettree] PrepareWorkingSet -> DEBU Enter - PrepareWorkingSet()“ …
18:02:40.435874: [buckettree] getAffectedBuckets -> DEBU Adding changed bucket [level=[9], bucketNumber=[<buID1>]]“ …
18:02:40.435912: [buckettree] getAffectedBuckets -> DEBU Changed buckets are = [[level=[9], bucketNumber=[<buID1>] level=[9], …]
<for each bucket> (timings for the first loop only)

18:02:40.435917: [buckettree] fetchDataNodesFromDBFor -> Fetching from DB data nodes for bucket [level=[9], bucketNumber=[<buID1>]] …
18:02:40.436192: [buckettree] computeCryptoHash -> Hashable content for bucket [level=[9], bucketNumber=[<buID1>]]
18:02:40.436221: [buckettree] processDataNodeDelta -> Crypto-hash for lowest-level bucket [level=[9], bucketNumber=[<buID1>]] is <hash>
18:02:40.436228: [buckettree] computeParentBucketNumber -> Computing parent bucket number for bucketNumber [<buID1>]

<for all levels where buckets are changed>

18:02:40.437179: [buckettree] processBucketTreeDelta -> DEBU Bucket tree delta. Number of buckets at level [8] are [3]"
<level 8 - 3, level 7 - 3, level 6 - 3, level 5 - 3, level 4 - 3, level 3 - 3, level 2 - 3, level 1 - 2>
<for buckets that are modified at each level (3,3,3,3,3,3,3,2)> (timings for the first loop only)

18:02:40.437207: [buckettree] processBucketTreeDelta -> DEBU bucketNode in tree-delta [bucketKey={level=[8], bucketNumber=[<buID1>]}
18:02:40.437251: [buckettree] processBucketTreeDelta -> DEBU bucket node from db
18:02:40.437289: [buckettree] processBucketTreeDelta -> DEBU After merge... bucketNode in tree-delta
18:02:40.437327: [buckettree] processBucketTreeDelta -> DEBU Computing cryptoHash for bucket
18:02:40.437511: [buckettree] processBucketTreeDelta -> DEBU cryptoHash for bucket
18:02:40.437543: [buckettree] computeParentBucketNumber -> DEBU Computing parent bucket number for bucketNumber [<buID1>]

18:02:40.442743: [indexes] addIndexDataForPersistence -> DEBU Indexing block number [<buID1>] by hash
18:02:40.442792: [state] AddChangesForPersistence -> DEBU state.addChangesForPersistence()... start
18:02:40.442939: [buckettree] addDataNodeChangesForPersistence ….
18:02:40.443192: [state] AddChangesForPersistence -> DEBU Adding state-delta corresponding to block number[<buID1>]"
18:02:40.443245: [state] AddChangesForPersistence -> DEBU Deleting state-delta corresponding to block number[<buID1>]"
18:02:40.443250: [state] AddChangesForPersistence -> DEBU state.addChangesForPersistence()...finished
18:02:40.443397: [ledger] resetForNextTxGroup -> DEBU resetting ledger state for next transaction batch
18:02:40.443489: [consensus/handler] CommitTxBatch -> DEBU Committed block with 1 transactions, intended to include 1
18:02:40.443569: [consensus/executor] ProcessEvent -> DEBU Committed block 292636 with hash <hash>
18:02:40.443624: execDoneSync -> INFO Replica 0 finished execution 292636, trying next"

Execute
transaction

Compute
crypto-hash of
world state

Consensus

Setup

Block
Commit

Figure 4.3: Snapshot of logs for block execution process

4.3.2 Model parameterization

We analyze the logs for 50 randomly chosen blocks and estimate the model parame-

ters followingthe same producedure as described in the earlier subsection.

For transaction execution, we find that Gamma is the only distribution that fits.

For crypto-hash of the world state, we find Erlang (3-stage) is the best fit, followed

by Hypoexponential (3-stage) and Gamma distribution. Summary statistics for the

datasets is shown in Table 4.2 and the empirical and fitted cumulative distribution

functions (CDF) are shown in Figure 4.4.

As we can see, the time to block execution is an order of magnitude larger than

49

5 6 7 8 9 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time to execute each transaction (CC)

C
D

F

Gamma

Time (ms)
10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time to compute world−state crypto−hash

C
D

F Weibull
Gamma
Erlang (2−stage)
Erlang (3−stage)
Hypoexp (2−stage)
Hypoexp (3−stage)

Time (ms)

Figure 4.4: Empirical, fitted cumulative distribution function (CDF) for time to
transaction execution and crypto-hash of world state

Table 4.2: Summary statistics for datasets corresponding to block execution process

Statistic Transaction
execution (ms)

Crypto-hash
world state (ms)

Total block
execution

Minimum 4.879 6.139 13.23
1st Quartile 5.852 9.810 22.56
Median 6.166 13.557 29.68
Mean 6.336 16.696 34.33
Std. Dev 0.912 12.150 19.711
3rd Quartile 6.604 17.299 42.81
Maximum 9.899 54.464 100.98

the time to consensus. For an average block size of three, it is unexpectedly high,

and very likely the performance bottleneck of the system.

4.4 Related Work

In this section, we discuss related papers that provide empirical analysis for v0.6 of

HLF. Empirical analysis for Fabric V1 and other blockchain networks is discussed in

Section 6.8.

Auh Dinh et al. [57] presents the performance evaluation of HLF v0.6, Ethereum,

and Parity, all in a private setting. For performance measurements at the applica-

tion level, they developed macro benchmarks based on the YCSB and Smallbank

benchmarks. Across all benchmarks, they measure the following application-level

performance metrics: throughput (same as goodput), latency, scalability (changes

in metrics with node failures, similar to performability), fault tolerance (change in

50

metrics with node failures), and security (stale block rate). They found HLF v0.6

had higher throughput and lower latency compared to other platforms for four peers;

however, the performance degraded significantly with increasing peers. Upon further

investigation at the consensus layer for a network of 16 peers, they found the con-

sensus messages were getting choked along with the client and gossip messages, and

hence peers were not able to complete the consensus in time.

Pongnumkal et al. [64] also evaluated the performance of HLF v0.6 and Etherum

(private). Rather than running the workload at a steady rate for a set duration, their

workload is a batch of requests of size ranging from 10 to 10k. Also, they considered

only one node per network, by disabling the consensus mechanism, thus exercising

just the transaction execution mechanism of the platforms. They measured average

transaction latency and throughput and total execution time of the batch. Given the

limitations of their experimental setup, we refrain from further comments on their

experimental results.

51

5

Performance modeling of Hyperledger Fabric v0.6

In this chapter, we present our performance models for Fabric v0.6. We primarily

focus on our model of the Practical Byzantine Fault Tolerance (PBFT) consensus

process, which is a critical application-generic performance aspect of the blockchain.

We parameterize the model using measurements from a production-grade Internet-

of-Things (IoT) application running on the IBM Bluemix service running with four

validating peers, and validate our model output with experimental results. Then, we

evaluate the mean time to complete consensus for networks up to 100 peers. For the

default configuration of four peers, we also perform sensitivity analysis with various

system parameters. This chapter is an extended version of our published work [29].

For completeness, we also present a model of the block execution process.

Some of the text, figures, tables in this chapter are reprinted, with permis-

sion, from “H. Sukhwani, José M. Mart́ınez, Xiaolin Chang, Kishor S. Trivedi, and

Andy Rindos. Performance Modeling of PBFT Consensus Process for Permissioned

Blockchain Network (Hyperledger Fabric). In IEEE International Symposium on

Reliable Distributed Systems (SRDS), pages 253–255, Sept. 2017.”

The main contributions of this research are as follows:

52

1. Scalable model of PBFT consensus process for Fabric v0.6, validated using data

collected from real-world setup.

2. Evaluation of consensus process for a large number of peers (up to 100) and

sensitivity analysis with respect to key parameters.

5.1 PBFT consensus process for Fabric v0.6

Leader

Validating
Peer 1

Validating
Peer 2

Validating
Peer 3

Client c*

…

𝑚′𝛼𝑐′ <Pre-Prepare, v, n, D(b)> 𝛼𝐿

Leader prepares a Tx
block b with seq. no. n

𝑚𝛼𝑐 … <Prepare, v, n, D(b), i> 𝛼𝑖 <Commit, v, n, i> 𝛼𝑖 <REPLY , v, t, c*, i, r> 𝜇𝑖𝑐∗

…

All VPs load block onto
chain, invoke chaincode &
process all Transactions

Figure 5.1: Sequence diagram of the PFBT protocol for Fabric v0.6

PBFT protocol provides a solution to the Byzantine generals problem to work

in asynchronous environments like the internet. PBFT works on the assumption

that less than one-third of the peers are faulty (f), which means that the network

should consist of at least n “ 3f ` 1 peers to tolerate f faulty peers [11]. Thus

f “ tpn ´ 1q{3u. If 2f ` 1 peers agree on the block of transactions, then each

VP executes all the transactions and appends the block as the next block on their

private ledger. Thus, due to the consensus, each VP possesses a ledger with the same

sequence of blocks.

Let us provide an overview of the consensus process using PBFT protocol. Ex-

tensive details of the PBFT protocol are discussed in [11], from where we borrow

some of the terminology for this subsection. For explaination in this subsection,

we assume symmetric-key encryption such as Message Authentication Code (MAC)

for encrypting messages between peers. Note that HLF lets us choose any message

53

encryption technique, and the choice of the encryption scheme does not affect our

analysis.

A sequence diagram of the PBFT consensus process is shown in Figure 5.1.

Client c sends Request message to its corresponding validating peer at time t with

operation o, appended with MAC αc. After many such request messages, the leader

creates a block with sequence number n and starts the pre-prepare phase by sending

a Pre-Prepare message to all the VPs with view id v, and a digest (cryptographic

hash) of block message Dpmq, appended with the MAC for each VP. Each VP re-

ceives the pre-prepare message, checks the integrity of the leader by verifying the

sequence number and other checks. It also verifies if the message is not a duplicate

of a previous message, before adding the tuple (n, v, m) to the database Q. For the

prepare phase, each non-leader VP sends a Prepare message to all other VPs with

identity i. Each VP waits for 2f ` 1 agreement messages (including the leader’s pre-

prepare and its own consensus) to get the majority consensus. Then each VP saves

the message tuple to database P . For the commit phase, each VP sends a Commit

message to all other VPs with the same format as Prepare message. After receiving

Commit messages from 2f other peers, each VP saves the commit certificate for that

block. It waits if there is a missing sequence number between the previously com-

mitted message; otherwise, it adds this block to the chain. Then, each VP processes

all the transactions inside the block, and sends Reply message back to the respective

client c with view v, time t, reply output r, and appends it with a MAC code µic

defined between the client c and VP i. Each client waits for the weak certificate,

which means it assumes the transaction is done if it receives f ` 1 messages, which

is one more than the maximum number of peers that can fail.

To prevent a faulty leader from affecting the entire consensus protocol, the VPs

are responsible for detecting any misbehavior of the leader, like sending a pre-prepare

message with an invalid sequence number or invalid MAC [11]. In such cases, the

54

VP can issue a view-change protocol, which initiates a consensus between the work-

ing VPs to elect a new leader. Later when the ex-leader is back on the network,

it can sync up with another VP to come up to speed with the blockchain, using

synchronization messages in case of Fabric [35].

In summary, PBFT is a state machine replication technique that supports two

properties, viz. safety and liveness, assuming that at most tpn´ 1q{3u out of n VPs

are faulty within a small window of vulnerability [11]. Safety means all VPs would

execute the transactions in the same order. Liveness means that clients eventually

receive replies to their requests. Further details of the PBFT protocol can be found

in [11]. In contrast with the protocol described in [11], where the message under

consensus is a message sent by a client itself, in Hyperledger, the message under

consensus is a block of transactions sent by the leader. A major concern here is the

large number of messages exchanged between the VPs to obtain this consensus.

5.2 Performance model of PBFT consensus process

In this section, we model the PBFT consensus process using SRNs. We are interested

in computing the “mean time to complete consensus” for a block using the three-

phase protocol. In our model (Figure 5.2), we capture the important steps in the

protocol that consume noticeable time, viz. transmission time of consensus messages

between peers (transitions with subscript Tx), time to process incoming consensus

message (transitions with subscript Ip), and time to prepare consensus message for

next stage (transitions with subscript Op).

We start with the following set of assumptions (many of these assumptions can

be relaxed if needed):

1. A leader peer is already chosen before the block transaction starts, and it does

not change during the execution of the three-phase protocol for a single block.

55

2. VPs do not fail at any time during the execution of the three-phase protocol

for a single block.

56

Start PP0Op PP1

PP2

PP3

PP01TX

PP02TX

PP03TX

PP1′

PP2′

PP3′

P1Op

P2Op

P3Op

P10

P12

P13

P20

P21

P23

P30

P31

P32

P10Tx

P12Tx

P13Tx

P20Tx

P21Tx

P23Tx

P30Tx

P31Tx

P32Tx

P0 P0Ip P0′

P1 P1Ip P1′

P2 P2Ip P2′

P3 P3Ip P3′

PC0

PC1

PC2

PC3

C0Op

[C0]

C1Op

[C1]

C2Op

[C2]

C3Op

[C3]

C01

C02

C03

C10

C12

C13

C01

C02

C03

C30

C31

C32

C01Tx

C02Tx

C03Tx

C10Tx

C12Tx

C13Tx

C20Tx

C21Tx

C23Tx

C30Tx

C31Tx

C32Tx

C0 C0Ip C0′

C1 C1Ip C1′

C2 C2Ip C2′

C3 C3Ip C3′

D0

D1

D2

D3

D0i

[D0]

D1i

[D1]

D2i

[D2]

D3i

[D3]

D0′

D1′

D2′

D3′

D Di

[Di]

Done

Pre-Prepare Prepare Commit

Figure 5.2: SRN model for PBFT consensus process

57

The SRN model in Figure 5.2 shows the details of the block consensus for a

system with four VPs. It starts from a token in place Start, signifying that the

leader is ready with the new proposed block, and ends with a token in place Done,

signifying that the consensus process is complete. Hereafter, we identify the leader

with the number 0 and the other VPs with the numbers 1, 2, and 3 respectively. In

the pre-prepare phase, the leader prepares a block, indicated by firing of transition

PP0Op and starts to transmit it to the three VPs, indicated by a token each in places

PP1, PP2, PP3. After a transmission delay, denoted by transitions PP01Tx, PP02Tx,

PP03Tx respectively, the message reaches the three VPs, denoted by a token each in

places PP11, PP21, PP31. This completes the pre-prepare phase of the protocol.

In the prepare phase, each VP processes and prepares the “prepare” message,

denoted by transitions P1Op, P2Op, and P3Op respectively. When those transitions

fire, say P1Op, it deposits tokens in three places, say P10, P12, and P13, which are

followed by a transmission delay, denoted by transitions P10Tx, P12Tx, and P13Tx

before the messages reach three other VPs. The messages are received by the respec-

tive VP and processed serially, denoted by transitions P0Ip to P3Ip. When a leader

receives 2f messages from other VPs or non-leader VPs receives 2f´1 messages from

other VPs (since it has its own and leader’s consensus), indicated by tokens in places

P01 to P31, the VP enters the commit phase by enabling the guard function, say rC0s

for transition C0Pr, to start preparing a “commit” message. Rest of the process is

similar to that in the prepare phase. Eventually, multiple tokens are deposited in

each place, say C01, corresponding to the commit messages received by for VP0. The

commit phase is complete when each VP receives at least 2f commit messages from

other VPs, which means 2f tokens in place, say C01. At this point, the transition,

say D0i is enabled by the guard function rD0s, thus completing the commit phase for

VP0. Since each peer completes consensus independently, in the post-commit phase

we assume that all the peers (3f ` 1) must complete consensus before we consider

58

the consensus process complete. This is done by incorporating guard function rDis.

Table 5.1 summarizes the guard functions for this model.

Table 5.1: Guard functions for SRN model in Figure 5.2

Guard Name Guard Function

rC0s If #P01 ě 2f , return 1, else return 0

rCxs, x P p1, 2, 3q If #Px1 ě 2f ´ 1, return 1, else return 0

rDxs, x P p0, 1, 2, 3q If #Cx1 ě 2f , return 1, else return 0

rDis If
ř

yPp0,1,2,3q #Dy1 “ 3f ` 1, return 1, else return 0

Thus we have a detailed model, where we model the transmission time between

all pairs of VPs in both prepare and commit phases, and model the processing and

queuing delays in each VP separately. The SRN in Figure 5.2 is a template for

extending the model to consider a network with more than four peers. We share

our Python script in Appendix C, which we use to generate SRN model for larger

number of peers.

Assuming the firing times for all transitions are exponentially distributed, the un-

derlying process (i.e., Markov chain) suffers from the state space explosion problem.

Such a detailed model is solvable when we have four VPs, but difficult to solve for a

larger number of peers. This issue imposes some restrictions to the applicability of

the analytic-numeric analysis of the model to compute the necessary output metrics.

Hence we compute the output metrics using the “simulation approach”, using the

Stochastic Petri Net Package (SPNP) [65]. The SPNP code for SRN model with

n “ 4 is shared in Appendix C.

5.3 Model Validation

We discuss details regarding the experimental setup, data collection, and model pa-

rameterization in Sections 4.1, 4.2. To summarize it here, we parameterize our model

as follows: Weibull (shape = 2.092, scale = 0.8468) for transitions with subscript

Tx, Weibull (shape = 1.509, scale = 0.2575) for transitions with subscript Pr in

59

pre-prepare and prepare phase, 2-stage Hypoexponential (λ1 = 22.050, λ2 = 267.97)

for transitions with subscript Pr in commit phase, Weibull (shape = 1.561, scale =

0.124) for transitions with subscript Q.

Since the firing time corresponding to transitions in our model have non-exponential

distribution, we use SPNP tool in simulator mode only (as opposed to computing

analytical-numerical solution). In the simulation approach, the SPNP package “sim-

ulates” the behavior of the SRN. For our model, we compute the total time (TT) up

to a token is deposited in Done place, which corresponds to the “time to complete

consensus” for a block. By averaging the TT over several simulation runs we obtain

the “mean time to complete consensus”. We conduct 5000 runs and consider the

average TT value (along with confidence interval) as our result. For the empirical

results, we consider the mean time observed between the statements sendBatch and

executeOne, as seen in Figure 4.1. Due to the presence of outliers in the empirical re-

sults, we compare the computed mean time to consensus from our model (3.0815 ms)

with the median empirical results (3.314 ms). With a relative error of about 7%, we

find the results comparable and our model validated.

5.4 Model Analysis

5.4.1 Sensitivity Analysis

10

20

30

2.5 5.0 7.5 10.0
Mean time to transmit (ms)

M
ea

n
tim

e
to

 C
on

se
ns

us
 (

m
s)

Figure 5.3: Sensitivity analysis with increasing Tx for equidistant peers

60

Let us analyze how the mean time to consensus is affected by various parameter

values. Assuming all the peers are equidistant from each other, we increase the

time to transmit (Tx) the message between all pairs of peers. From our analysis in

Section 4.2, we assume all transitions for Tx are Weibull distributed. We vary the

mean time to transmit the message from 0.75 ms to 10 ms and assume standard

deviation as 20% of the mean. We plot our results in Figure 5.3. We find that an

increase in the mean transmission time between all pairs of peers by 1 ms corresponds

to a 3.0539 ms increase in the mean time to consensus, which makes sense since

messages are transmitted in three phases of the consensus process. For reference,

the round-trip latency between two nodes hosted on Amazon Web Services (AWS)

ranges from 5 ms [66] for nodes within the same AWS region to around 200 ms [67]

between two AWS regions across the Pacific. The average round-trip latency across

the continental US is around 45 ms [68]. Note that due to the asymmetric nature

of the internet routes, half of the mean round-trip time is only a rough estimate for

mean time to transmit a message [69].

2.8

3.0

3.2

3.4

3.6

3.8

2 4 6 8
Mean time to transmit for one isolated peer (ms)

M
ea

n
tim

e
to

 C
on

se
ns

us
 (

m
s)

Figure 5.4: Sensitivity analysis with increasing Tx for one isolated peer

Next, let us consider a scenario where one peer is located far from the rest of

the peers. Let us increase the mean time to transmit messages between the isolated

peer to the rest of peers, keeping the mean time to transmit messages between rest

of peers as 0.75 ms. Since the isolated peer will take significantly longer to complete

61

the consensus, let us consider that the consensus process is complete when 3f peers

achieve consensus (changing guard function rDis). The results in Figure 5.4 satisfy

our intuition, where the mean time to consensus would not increase significantly,

since the dislocated peer would not be able to participate as actively in the consensus

process.

For Pr, we vary the mean time to process a message in preprepare and prepare

phase from 0.02 ms to 2 ms, and find that the mean time to consensus increases with

a slope of 1.89. For Q, we vary the mean time to queue a message from 0.01 ms to

1 ms and find that the mean time to consensus increases with a slope of 3.309. Thus,

a slowdown in handling incoming prepare and commit messages can have a greater

impact on the mean time to consensus than the slowdown in processing a message

for the new phase.

5.4.2 Large number of peers

We can easily scale our model to a large number of peers. Since n “ 3f ` 1, we

consider values of n in increments of f , i.e., n “ 4, 7, 10 for f “ 1, 2, 3, respectively,

up to n “ 100. We evaluate the model using the parameters from our experimental

validation. Let us first focus on analysis up to 10 peers, in the inset of Figure 5.5.

As expected, the time to consensus increases with n, however, the slope decreases

at n “ 7. Since 2f ` 1 consensus messages are required by each peer in the prepare

and the commit phases, the proportion of peers required for consensus decreases

from three out of four peers (75%) for n “ 4 to five out of seven peers (71.42%) for

n “ 7, and so on, asymptotically reaching 2
3

(66.667%). However, the slope starts

increasing again after n “ 10. This happens due to increasing queuing delays for

messages in the prepare and commit phases. The slope continues to increase slightly

as n increases. Eventually, the mean time to consensus for n “ 100 is 5.34 times that

for n “ 4.

62

3.0

4.5

6.0

7.5

9.0

10.5

12.0

13.5

15.0

16.5

4 710 16 34 49 64 82 100
Number of peers (n)

M
ea

n
tim

e
to

 c
on

se
ns

us
 (

m
s) 3.0

3.3

3.6

3.9

4.2

4.5

4 7 10 16

Figure 5.5: Mean time to consensus for large number of peers (mean Tx = 0.75ms)

2.8

2.9

3.0

3.1

3.2

3.3

4 7 10 16 34
Number of peers (n)

M
ea

n
tim

e
to

 c
on

se
ns

us
 (

m
s)

Figure 5.6: Mean time to consensus for large number of peers from the model that
considers no queuing

63

To further elaborate our observation, let us consider a model without any queue-

ing for prepare and commit phase, essentially removing transitions POQ to P3Q and

COQ to C3Q and related changes in our model in Figure 5.2. Thus, when 2f `1 pre-

pare messages are ready, the peer starts processing in the commit phase. We use the

same parameterization as above and plot our observation in Figure 5.6. You can see

that the rate of increase in mean time to consensus decreases as n increases, asymp-

totically approaching a value. This plot exaggerates the fact that the proportion of

peers required for consensus decreases as n increases.

16.0

16.5

17.0

17.5

18.0

18.5

4 7 10 16 34
Number of peers (n)

M
ea

n
tim

e
to

 c
on

se
ns

us
 (

m
s)

Figure 5.7: Mean time to consensus for large number of peers (mean Tx = 5ms)

In the analysis discussed earlier, we assumed that the mean time to transmit

messages is the same as that observed in our Bluemix setup. However, in a realistic

scenario, the peers might be located in separate regions of the same data centers or

different data centers, and hence the mean time to transmit messages will be much

larger. Let us assume that the mean time to transmit messages between all pairs of

peers is 5 ms. As shown in Figure 5.7, we see a similar pattern for the mean time

to consensus; however, the percentage increase in the mean time to consensus for

n “ 34 compared to n “ 4 is 15%, compared to 116% increase when mean time

to transit is 0.75 ms (Figure 5.5). This percentage increase continues to decrease

for networks with even larger mean transmission delays. Thus if the transmission

delays are an order of magnitude or two greater than the time to process or queue the

64

message, the mean time to consensus does not increase significantly as n increases.

5.5 Performance model of Block Execution process

DoneVP0 Startup Pstartup CC PCC WShash PWS BCommitExecuted

n n

Startup Chaincode Exec. World-State crypto-hash Block Commit

Figure 5.8: SRN model for Block Execution process at each VP

In this section, we present the SRN model of the block execution process. This

model can be used in conjunction with the previous SRN model to compute the

end-to-end latency from block creation to transaction completion.

For our modeling and analysis, we focus on the two steps that consume the most

significant time: a) Transaction execution and computing the block crypto-hash, b)

computing the crypto-hash for the world-state. As highlighted in Figure 4.3, we

consider “Startup” as the stage before the first transaction execution begins, and we

consider “Block Commit” as the stage after the crypto-hash is computed. Since all

these steps are performed in a sequence, we can model this as a simple SRN model

as shown in Figure 5.8.

After the consensus process is complete, the block is executed at each VP inde-

pendently. Thus place DoneVP0 indicates completion of consensus process at VP0.

After a few steps to startup the block execution process (represented by transition

Startup), each transaction is executed by the corresponding chaincode. The chain-

code needs to be launched when a transaction corresponding to it is encountered

for the first time, which we assume is already done in a steady-state. Assuming

our block has n transactions, each transaction is executed and its crypto-hash is

computed serially (represented by transition CC. This process is repeated n times

before all transactions are complete. After a few smaller steps (which we ignore in

65

our analysis), the next major step is to compute the crypto-hash of the world-state

as described earlier. For simplicity, we represent this as a single transition WShash.

Finally the process of storing key-value pairs in persistent storage, and other closing

steps are represented by transition BCommit.

One of the challenges here is to estimate the value of n. Since each transaction

execution (via chaincode) takes 6.336 ms, this contributes significantly to the block

execution time. Assuming that the transaction arrival process is Poisson with rate

λ, since our PBFT batch timeout (T) is one sec., then the average number of trans-

actions per block n “ λT “ λ. Keeping this observation in mind, we decided to use

Poisson arrival process while testing our HLF V1 network (ref. Section 6).

5.6 Discussion

5.6.1 Threats to validity

The results of our analysis are subjected to the validity of the parameters estimated

in our experiments. The time to transmit a message (Tx) that we considered in

our model corresponds to the end-to-end transmission delay of consensus messages

between two peers. Given the granularity of our logs, this is the best we can cap-

ture. Future work should consider measuring the transmission latency in two parts:

between the two peers and latency due to the software stack. Same way, time to

process a message (Pr) consists of various steps, including message authentication,

verifying for duplication or incorrect sequence number, where time consumed in each

step is hard to measure. In our research of HLF V1, we have paid more attention to

such details (ref. Section 6.4). Also, larger networks might result in blocks of larger

size, which could require more time to process and queue. Given the closeness of

results from our model (n “ 4) with the empirical results, we feel confident about

our results and analysis.

66

5.7 Related Work

5.7.1 Performance evaluation of BFT consensus protocol

Croman et al. [21] study the latency (time to confirm a transaction) and throughput

(number of transactions per second) of a consensus system using PBFT protocol up

to 64 peers spread across eight AWS data centers. They find that latency increases

and throughput decreases as the number of peers increases. Due to Opn2q messages

exchanged, they express concern that the performance will be much worse for higher

number of peers, which we attempt to answer in our research. The authors in [70]

model the performance of PBFT protocol using a combination of model checking and

simulation techniques. The authors consider two time-consuming operations: net-

work operations (i.e. message transmissions) and cryptography (using MAC). Based

on our measurement abilities, we consider “time to process message”, which includes

cryptography and other verification steps together. The authors developed micro

benchmarks to obtain sample execution time for each path in the target protocol,

focusing their analysis on the paths with longest execution time. In our work, we

do performance modeling using SRN in a general case, without focusing only on the

longest execution path. Clement et al. [71] study the fault-tolerance of popular BFT

protocols such as PBFT [11] and Zyzzyva [72] in the presence of Byzantine faults.

They perform experimental evaluation with four co-located peers and observe a la-

tency of under 15ms for 99.99% of requests, where latency consists mainly of the time

to complete consensus. From our SRN model, we evaluate mean time to consensus

for much larger networks. Similar modeling and analysis can be performed for other

popular BFT protocols such as Zyzzyva.

67

5.8 Conclusions

In this chapter, we presented a detailed and scalable model of the PBFT consensus

process for Hyperledger Fabric v0.6. We created a Fabric network using IBM Bluemix

service, running a production-grade IoT application and use the data to parameterize

and validate our model. We estimate the “mean time to complete consensus” using

simulation techniques using the SPNP package. For four peers, we find the solutions

from the SRN model are comparable to the empirical results, with a relative error

of about 7%. Using the validated SRN models, we analyze PBFT consensus process

up to 100 peers and find that the mean time to consensus increases by 5.34 times for

100 peers compared to that for four peers if the transmission delays are of the same

order of magnitude as the processing and queuing delays. However, in a real-world

scenario where peers are geographically dispersed, and transmission delays are large,

the percentage increase in the mean time to consensus would not be as significant

for a large number of peers.

Future research work should focus on validating the model for a larger number

of peers. Also validate the model for different deployment configuration and PBFT

configuration parameters. We could not continue this research work with Fabric v0.6

since the community had move on with development of v1.0, which had a completely

different architecture. Also there are technical issues in the implementation of Fabric

v0.6 (discussed in detail in [57]), due to which the performance was expected to be

limited. Future research work could consider other order-execute style blockchain

platforms that are free and open-source, such as Hyperledger Sawtooth Lake. Similar

research could be conducted for other popular consensus protocols, such as BFT-

SMaRt [73], Raft [74].

68

6

Empiricial Analysis for Hyperledger Fabric V1

We setup a Fabric V1 network in the Duke datacenter and use the data collected

to parameterize and validate our model. Unlike the research summarized in Sec-

tion 6.8.1, the goal of this work is not to benchmark Fabric’s performance by stress

loading the system; instead we take measurements from a Fabric network subjected

to a realistic traffic pattern. In this chapter, we provide details of the tools used,

network setup, and our methodology for data collection and analysis and interesting

empirical observations. This chapter provides extensive empirical details of our work

presented in our published work [75].

6.1 Experimental Setup

The deployed network is shown in Figure 6.1. Each node is launched as a Docker

container and then connected in a network using the Docker Swarm1. Although peers

and orderers can run natively on the physical/virtual machine, a network of Docker

containers is a recommended approach for deploying Fabric networks [76]. This ap-

1 https://docs.docker.com/engine/swarm/

69

https://docs.docker.com/engine/swarm/

Caliper

1

Fabric Node SDK

Ordering Service

OSN

Org0

Peer CACACC

Peer CACACC

20...
Clients

1 4

Kafka
 Brokers

1 3

Zookeeper
Ensemble

2

Org1

32

Figure 6.1: Hyperledger Fabric V1 network setup

proach is taken by the Hyperledger Cello2 project as well. Containers corresponding

to each organization (peer and CA) are run on an independent physical node (Org0,

Org1). Peers executes chaincode in a separate container (called CC). All contain-

ers corresponding to the ordering service run in a single physical node (‘Ordering

Service’). It includes one ordering service nodes (OSN), four Kafka brokers, three

ZooKeeper nodes. Hyperledger Caliper is deployed on a separate physical node, with

multiple client threads that interact with the locally installed Fabric Node.js SDK3.

We provide the detailed steps for setting up the Fabric network in Appendix A. Note

that we consider a network with one peer per organization, and hence we ignore the

implication of the gossip protocol on the network performance.

Physical machines corresponding to Org0, Org1, and Caliper have 4 CPUs (1

socket, 4 core) (Intel Xeon 2.2 GHz) with 12GB RAM, and that running ordering

service has 16 CPUs (2 sockets, 4 cores, 2 hyper-threads) Intel Xeon 2.4 GHz with

32GB RAM. Each machine is running Ubuntu 16.04 LTS on a 7200 rpm Hard Disk

Drive with Fabric release v1.14 installed. All physical machines are connected with

a 1 Gbps switch. All nodes are synchronized using Network Time Protocol (NTP)

service so that transaction latency can be measured across nodes. Communication

2 https://www.hyperledger.org/projects/cello

3 https://github.com/hyperledger/fabric-sdk-node

4 commit id 523f644

70

https://www.hyperledger.org/projects/cello
https://github.com/hyperledger/fabric-sdk-node

between all nodes is configured to use Transport Layer Security (TLS).

6.2 Load generation using Hyperledger Caliper

To execute workload, we use the Hyperledger Caliper [23], recently approved as a

project by the Hyperledger community. It is a benchmark execution platform that

enables the user to measure the performance of different DLT platforms consistently.

The end goal of this tool is to help users evaluate the blockchain platform that best

suits their application. At the time of writing this thesis, it supported Hyperledger

Fabric, Hyperledger Sawtooth Lake, Hyperledger Iroha and Hyperledger Composer

projects.

An advantage of using this tool is that it takes care of the complex workflow

performed by the client (using Fabric SDK) including handling of event notifications

from the peer. To generate traffic following a Poisson arrival process, we implemented

a new rate-control function in Caliper. A current limitation of Caliper is that it

supported interaction with only one OSN node.

6.3 Test application

For our performance testing, we leverage the simple chaincode provided by the

Caliper tool and extend it for our needs. This application maintains account bal-

ances for users. It can perform two functions. Function ‘open’ checks if an account

exists, and if not, create a new account and assigns it an account balance. Thus it

performs one read, one write operation to the key-value store. Function ‘transfer’

allows transfer of money from one account to another. Thus it performs two read,

two write operations. Before running ‘transfer’ transactions, we run ‘open’ transac-

tions for a few mins. to populate the key-value store. Authors in [41] also followed a

similar approach of differentiating workloads by the number of read-write operations.

For both the functions, the input account number(s) are selected randomly; hence

71

there is almost no dependency between consecutive transactions; thus the transac-

tions never seem to fail the MVCC validation. This way, we can easily generate a

workload of all valid transactions at a high rate5.

6.4 Measurements
O

rderin g S
ervi ce

Client Peer 0 Peer 1

1

2

2

34

5

6

Commit

Tx. proposal

Tx. simulation
& endorsement

Tx. proposal response

Endorsement collection
& broadcast

Block generation & deliver

Validation

5

4

ACK

@ Caliper

X
X

X @Peer <timestamp> [endorser] preProcess -> <channel_id> processing txid: <tx-id>

@Peer <timestamp> [endorser] endorseProposal -> <channel_id> [tx-id] Exit+
@Peer <timestamp> [committer/txvalidator] validateTx -> validateTx starts for block <block-id> txn <tx-num>

VSCC validation

MVCC validation

Ledger write

@Peer <timestamp> [committer/txvalidator] validateTx -> validateTx completes for block <block-id> txn <tx-num>

+

@Peer <timestamp> [kvledger] CommitWithPvtData -> [<channel_id>]: Validating state for block [<num>]

@Peer <timestamp> [kvledger] CommitWithPvtData -> [<channel_id>]: Committing block [<num>] to storage

@Peer <timestamp> [kvledger] CommitWithPvtData -> [<channel_id>]: Committing block [<num>] transactions
 to history database

+

@Peer <timestamp> [blocksProvider] DeliverBlocks -> Gossipping block

Z

Z
@OSN <timestamp> [orderer/common/blockcutter] Ordererd -> Batch size met, cutting batch OR

@OSN <timestamp> [orderer/consensus/kafka] processTimeToCut -> Proper time-to-cut received

E
nd

orsing
O

rdering
V

alidation

Figure 6.2: Transaction life-cycle on Hyperledger Fabric V1 with measurement
details

We measure the time taken to perform critical steps in the transaction life-cycle

5 https://lists.hyperledger.org/g/perf-and-scale-wg/topic/17550808

72

https://lists.hyperledger.org/g/perf-and-scale-wg/topic/17550808

by analyzing the caliper output files, peer logs, and orderer logs. Figure 6.2 shows

the transaction sequence diagram along with the venue where the timestamp is cap-

tured and a snapshot of the log entry in peer/orderer. We converted these vital log

entries from DEBUG mode to INFO mode. For some parameters such as time to

endorsement, there were multiple candidate log entries for start and/or end of the

operation. We identified the best choice by performing distributional analysis (ref.

Section 6.5) for all combination of start and/or end operations and verify that the

measurement does not inadvertently include a queuing delay.

To measure the mean queue length at each transaction life-cycle phase, we add

additional log entries to capture the time when a new transaction enters and leaves

that phase. For each life-cycle phase, let us consider its state as the number of jobs

waiting for service or in-service. By analyzing these log entries, we can measure

the time spent in each state. The average time spent in each state weighted by the

number of jobs gives the average queue length in that phase [77].

We also increased the timestamp resolution to microseconds. Finally, we mea-

sured the overhead of additional logging for a setup with block size 500 and λC “ 100,

and observe only a 0.64% increase in the average transaction latency, and 0.48% in-

crease in 75%ile latency. Our Fabric source code changes can be found here6.

We run Caliper with 20 client threads and test duration of 240 sec., ensuring

that the transaction arrivals follow a Poisson arrival process. We trim the first and

last 20 sec. of a test run as a ramp-up and ramp-down phase. To validate our

model for different configuration settings, we vary three parameters: a) client tx.

arrival rate (λC), b) block size, c) Transaction type (‘open’ and ‘transfer’). Due

to our hardware limitations, we could not vary the number of CPUs for validating

peer. We plan to pursue it in our future work. For a given block size, we keep

λC sufficiently high such that most blocks are created due to block size rather than

6 https://bitbucket.org/hvs2/fabric-perf-model/src/master/diff_files

73

https://bitbucket.org/hvs2/fabric-perf-model/src/master/diff_files

timeout (ref. Section 7.5.2). All docker instances were restarted between each test

run.

6.5 Model Parameterization

We start this section by describing the general procedure followed in analyzing the

datasets to estimate the model parameters. Further discussion on the model param-

eters used in our analysis in Chapter 7 is described in Section 7.2.

The parameter values for our model are measured either at transaction-level or

a block-level. The ones at transaction-level are time to endorse, time to transmit to

orderer, and time to validate (VSCC). The ones at block-level are time to consensus

(+ block transmission), time to MVCC check, and time to ledger write. We run

our experiments for each combination of block size and client arrival rate and collect

datasets for each combination separately. Note that the experiments are run for the

same duration for each combination; hence the dataset size varies by the arrival rate.

For transaction-level parameters, ideally, there should be no statistical variation

in the measurements across the combinations. However, using the ANOVA and

Tukey’s honest significance test, we find that it is not the case. It makes model

parameterization challenging since it is cumbersome to manage a set of parameter

values for each combination of the experimental setting. Also, we lose the purpose of

preparing a stochastic model. From the above-described collection of datasets, our

goal here is to derive a single dataset for each model parameter which we can use to

parameterize our model. We describe our procedure as follows.

For the transaction-level parameters, for each block size, we compare the datasets

across client arrival dates using Tukey’s Honest significance test. In our case, we had

three datasets corresponding to three different arrival rates. We found that at most

one out of three datasets was statistically different than the others. We discarded

such datasets and merged the remaining datasets. Thus we have one dataset for each

74

block size. Then we perform a similar comparison again for datasets across block

sizes and discarded the ones that were statistically different than the others. Thus

we derive one dataset for each parameter value. In all the above comparisons, we

equalize the length of datasets by sampling the datasets by the length of the smallest

dataset.

For block-level parameters, the measurements are expected to be statistically

different for each block size. We validate this by comparing the datasets using Tukey’s

honest significance test. We follow the similar procedure as described earlier; however

we derive a dataset for each block-level.

Let us provide the empirical details of datasets corresponding to each model

parameter. Then, we attempt to fit well-known statistical distributions, following

the same procedure as described in Chapter 4. We also describe our challenges in

fitting distributions to datasets of transaction-level parameters.

6.5.1 Transaction-level parameters

Histogram and theoretical densities

data

D
en

si
ty

10 20 30 40 50 60 70

0.
00

0.
10

0.
20

Exponential
Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

0 20 40 60 80

10
30

50
70

Q−Q plot

Theoretical quantiles

Em
pi

ric
al

 q
ua

nt
ile

s

Exponential
Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical and theoretical CDFs

data

C
D

F Exponential
Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P−P plot

Theoretical probabilities

Em
pi

ric
al

 p
ro

ba
bi

liti
es

Exponential
Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

Figure 6.3: Empirical analysis for ‘time to client processing’ (TPr)

75

Histogram and theoretical densities

data

D
en

si
ty

5 10 15 20 25 30 35

0.
0

0.
1

0.
2

0.
3

0.
4 Exponential

Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

0 10 20 30 40

5
10

15
20

25
30

35

Q−Q plot

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

Exponential
Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical and theoretical CDFs

data

C
D

F Exponential
Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P−P plot

Theoretical probabilities

E
m

pi
ric

al
 p

ro
ba

bi
lit

ie
s

Exponential
Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

Figure 6.4: Empirical analysis for ‘time to endorsement’ (TEn)

Figures 6.3,6.4,6.5,6.6 shows the empirical density, cumulative distribution func-

tion, Q-Q, and P-P plots along with distribution fitting for the datasets corresponding

to four model parameters, viz., client processing, endorsement, transmit to ordering

service, and VSCC validation respectively. Table 6.1 presents the summary statistics

of the plotted datasets.

Table 6.1: Summary statistics for datasets of transaction-level parameters

Statistic Client pr. (ms) Endorsement (ms) Tx. to OS (ms) VSCC validation (ms)

Minimum 4.008 1.703 2.719 1.217
25 %ile 5.227 2.460 3.778 1.830
Median 5.640 2.703 4.187 2.090
Mean 6.470 3.249 5.221 2.525
Std. Dev. 3.513 1.73 5.125 1.433
75 %ile 6.545 3.323 4.878 2.741
95 %ile 9.426 6.059 8.770 4.445
Maximum 74.400 35.060 121.472 29.426

76

Histogram and theoretical densities

data

D
en

si
ty

0 20 40 60 80 100 120
0.

00
0.

10
0.

20

Exponential
Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

0 10 20 30 40 50 60

0
20

40
60

80
12

0

Q−Q plot

Theoretical quantiles

Em
pi

ric
al

 q
ua

nt
ile

s

Exponential
Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical and theoretical CDFs

data

C
D

F Exponential
Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P−P plot

Theoretical probabilities

Em
pi

ric
al

 p
ro

ba
bi

liti
es

Exponential
Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

Figure 6.5: Empirical analysis for ‘time to transmit to ordering service’ (TTx)

From the density plots, we can see that all the datasets have a heavy-tail. This

makes distribution fitting challenging, even when we try to fit popular heavy-tail

distributions such as Pareto or LogNormal. Using the goodness of fit criteria such

as AIC and BIC, we find Gamma distribution to be the best fit among all the dis-

tributions. However, looking at the Q-Q plot, it seems the dataset has an unusually

large number of samples in the 75 percentile to the top percentile range. It is hard

to say if it is a measurement error or it is how the system behaves.

In summary, we experienced challenges in fitting distributions to the above datasets.

We tried fitting distributions on a subset of 1000 samples from the original dataset,

but the results are similar.

6.5.2 Block-level parameters

Figures 6.7,6.8, and 6.9 shows the empirical density, cumulative distribution function,

Q-Q, and P-P plots along with distribution fitting for the datasets corresponding to

block-level model parameters, viz., block creation and delivery, MVCC validation

77

Histogram and theoretical densities

data

D
en

si
ty

5 10 15 20 25 30

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Exponential
Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

0 5 10 15 20 25

5
10

15
20

25
30

Q−Q plot

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

Exponential
Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical and theoretical CDFs

data

C
D

F Exponential
Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P−P plot

Theoretical probabilities

E
m

pi
ric

al
 p

ro
ba

bi
lit

ie
s

Exponential
Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

Figure 6.6: Empirical analysis for ‘time to validate transaction’ (TVSCC)

Table 6.2: Summary statistics for datasets of block-level parameters

Statistic Block creation + delivery MVCC validation(ms) Ledger write (ms)

Block Size 40 80 120 40 80 120 40 80 120
Minimum 56.31 64.76 75.80 1.948 4.223 6.228 181.8 178.9 163.4
25 %ile 68.93 76.27 87.64 2.322 4.641 6.802 199.0 203.1 179.4
Median 73.94 80.00 91.28 2.442 4.841 7.007 205.8 207.9 185.6
Mean 75.74 81.60 93.56 2.562 5.103 7.200 207.8 208.3 188.4
Std. Dev 11.82 9.58 10.36 0.527 1.055 0.795 13.6 10.4 18.4
75 %ile 79.67 85.04 96.53 2.624 5.091 7.253 212.1 213.5 193.0
95 %ile 97.64 97.63 113.61 3.277 7.014 8.319 231.4 222.7 204.9
Maximum 134.46 143.05 154.21 6.013 12.314 12.163 283.3 274.4 309.6

78

Histogram and theoretical densities

data

D
en

si
ty

60 80 100 120 140

0.
00

0.
01

0.
02

0.
03

0.
04

Exponential
Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

0 100 200 300 400 500

60
80

10
0

12
0

14
0

Q−Q plot

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

Exponential
Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

60 80 100 120 140

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical and theoretical CDFs

data

C
D

F Exponential
Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P−P plot

Theoretical probabilities

E
m

pi
ric

al
 p

ro
ba

bi
lit

ie
s

Exponential
Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

Figure 6.7: Empirical analysis for ‘time to block creation and delivery’ (TOS)

and ledger write respectively for block size 40 only. Table 6.2 presents the summary

statistics of the plotted datasets.

For the block creation and delivery, LogNormal is the best-fit distribution, fol-

lowed by Gamma. The measurement for this parameter can be split into two: block

creation and block transmission. Across the block sizes, we find that only the block

transmission time changes significantly. Thus, the total time to block creation and

transmit varies across block sizes mainly due to the block transmission. Thus Kafka-

based ordering service does not take significantly longer to create blocks of larger

size. Given the size of the block is large enough (in 100s of kBs), the transmission is

throughput bound rather than latency bound. Hence transmission time is propor-

tional to the size of the block (ref. Section 6.6.2). For reference, the size of each

79

Histogram and theoretical densities

data

D
en

si
ty

2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Exponential
Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

0 5 10 15

2
3

4
5

6

Q−Q plot

Theoretical quantiles

Em
pi

ric
al

 q
ua

nt
ile

s

Exponential
Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical and theoretical CDFs

data

C
D

F Exponential
Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P−P plot

Theoretical probabilities

Em
pi

ric
al

 p
ro

ba
bi

liti
es

Exponential
Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

Figure 6.8: Empirical analysis for ‘time to MVCC validation’ (TMVCC)

‘open’ transaction is around 3.7KB, the size of blocks with batch size 40, 80, and

120 are 148KB, 296KB, and 440KB respectively.

For the other two parameters as well, LogNormal followed closely by Gamma

are the best-fit distributions. However, from the Q-Q plot, it looks like even the

Weibull and Pareto distributions are a reasonable fit. Across the block sizes, the

time to MVCC validation seems to increase in proportion to the block size, which is

expected. However, for the ledger write, we are not sure why ledger write for block

size 120 takes a shorter time than the other two. We rerun the experiment to collect

new datasets, but the observations were consistent.

In summary, distribution fitting for block-level parameters looks rather straight-

forward compared to that for the transaction-level parameters. We have shared the

80

Histogram and theoretical densities

data

D
en

si
ty

180 200 220 240 260 280

0.
00

0.
01

0.
02

0.
03

0.
04

Exponential
Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

0 200 400 600 800 1200

18
0

20
0

22
0

24
0

26
0

28
0

Q−Q plot

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

Exponential
Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

180 200 220 240 260 280

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical and theoretical CDFs

data

C
D

F Exponential
Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P−P plot

Theoretical probabilities

E
m

pi
ric

al
 p

ro
ba

bi
lit

ie
s

Exponential
Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

Figure 6.9: Empirical analysis for ‘time to Ledger write’ (TLedger)

raw datasets in our repository7 for further research efforts on distribution fitting.

6.6 Analysis by transaction phase

Motivated by the empirical analysis presented in [22, 41], let us analyze each trans-

action phase, viz. endorse, ordering, and validation. These phases are shown in

Figure 6.2. Unless otherwise mentioned, all analysis in this section is for block

size 40 with λC “ 80.

7 https://bitbucket.org/hvs2/fabric-perf-model/src/master/data_analysis/

datasetsV1

81

https://bitbucket.org/hvs2/fabric-perf-model/src/master/data_analysis/datasetsV1
https://bitbucket.org/hvs2/fabric-perf-model/src/master/data_analysis/datasetsV1

Table 6.3: Summary statistics for time to complete each transaction phase for block
size = 40, λC “ 80

Statistic Endorsing (ms) Ordering (ms) Validation (ms)

Minimum 7.00 59.36 183.7
25 %ile 8.00 195.61 218.0
Median 10.00 328.09 227.1
Mean 13.42 337.25 228.4
Std. Dev. 10.18 167.34 15.6
75 %ile 13.00 464.40 236.8
95 %ile 35.00 609.60 253.3
Maximum 146.00 1063.09 328.7

6.6.1 Endorsing

Time to complete endorsement

For transactions with endorsement policy AND(Org1, Org2), let us analyze the time

to complete endorsement, which is the time difference between the transaction cre-

ation (at Caliper) and the time endorsement process is completed (at Caliper as well).

Figure 6.10 shows the empirical density and CDF plots. The summary statistics are

presented in Table 6.3.

Empirical density

Data

D
en

si
ty

0 50 100 150

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative distribution

Data

C
D

F

Figure 6.10: Time to complete endorsement for AND() policy

82

Arrival process of endorsed transactions

Histogram and theoretical densities

data

D
en

si
ty

0 20 40 60 80 100 140

0.
0

0.
4

0.
8

1.
2 Exponential

Weibull
Gamma
Erlang (2−stage)

0 50 100 150 200

0
20

60
10

0
14

0

Q−Q plot

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

Exponential
Weibull
Gamma
Erlang (2−stage)

0 20 40 60 80 100 140

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical and theoretical CDFs

data

C
D

F

Exponential
Weibull
Gamma
Erlang (2−stage)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P−P plot

Theoretical probabilities

E
m

pi
ric

al
 p

ro
ba

bi
lit

ie
s

Exponential
Weibull
Gamma
Erlang (2−stage)

Figure 6.11: Empirical analysis for ‘Time to complete endorsement’ for AND()
policy

Let us analyze the arrival process of transactions at the ordering service, by

analyzing the inter-arrival time between endorsed transactions. The results are shown

in Figure 6.11. The mean inter-arrival time is 12.94 which is close to the mean inter-

arrival time of 12.927 ms for transactions at the client.

From the distribution fitting analysis, the best-fit distribution was Weibull fol-

lowed by Gamma and Exponential. Since Exponential distribution is a reasonably

good fit, we can assume that the endorsed transaction arrivals follow a Poisson pro-

cess (as done in Section 7.5.2). It also encourages us to consider a simpler model

for the full network (Section 7.4), by abstracting out the endorsement process for

83

straightforward endorsement policies.

6.6.2 Ordering

Time to complete ordering

The ordering latency of a transaction is the time difference between an orderer receiv-

ing an endorsed transaction and the transaction included in the block and received

by the peer. A significant component of this measurement is the waiting time of the

transaction before it gets included in the block, which would vary by the block size

and arrival rate of endorsed transactions. From the summary statistics (Table 6.3),

ordering latency is the most significant contributor to the transaction latency.

Block transmission time

The summary statistics for block transmission time for various block sizes is presented

in Table 6.4. We observe that the block transmission time increases linearly with the

block size. We attempt to fit distributions (shown for block size 40 in Figure 6.12)

on datasets of each block size. In each case, we find that LogNormal is the best-fit

distribution, followed closely by Gamma and then Weibull.

Table 6.4: Summary statistics for block transmission time with λC “ 80

Statistic Block size 40 (ms) Block size 80 (ms) Block size 120 (ms)

Minimum 5.619 8.798 14.35
25 %ile 6.673 11.073 17.31
Median 6.863 11.696 17.97
Mean 7.202 11.959 18.31
Std. Dev. 0.861 1.407 1.75
75 %ile 7.506 12.666 19.32
95 %ile 8.919 14.454 21.53
Maximum 12.503 18.989 26.39

Block arrival process λB

We analyze the inter-arrival times between blocks at the peer (Figure 6.13). The

mean inter-arrival time is 521.2 ms with std. deviation of 79.44 ms.

84

Histogram and theoretical densities

data

D
en

si
ty

6 7 8 9 10 11 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Exponential
Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

0 10 20 30 40 50

6
7

8
9

10
12

Q−Q plot

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

Exponential
Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

6 7 8 9 10 11 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical and theoretical CDFs

data

C
D

F Exponential
Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P−P plot

Theoretical probabilities

E
m

pi
ric

al
 p

ro
ba

bi
lit

ie
s

Exponential
Weibull
Gamma
Erlang (2−stage)
Hypoexp (2−stage)
LogNormal
Pareto

Figure 6.12: Empirical analysis for ‘Block transmission time’ for block size 40,
λC “ 80

6.6.3 Validation

Time to complete validation

We measure the validation latency of a transaction as the time difference between a

peer starting a transaction validation, and the peer receives the transaction comple-

tion notification. It consists of VSCC validation, MVCC validation and ledger write.

Note that the MVCC validation and ledger write are measured at a block level. From

the summary statistics (Table 6.3), we can see that the validation latency is in the

range of 100s of ms.

85

Empirical density

Data

D
en

si
ty

300 500 700 900

0.
00

0
0.

00
2

0.
00

4

300 500 700 900

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative distribution

Data

C
D

F

Figure 6.13: Inter-arrival time between blocks (block size 40, λC “ 80)

6.7 Implications of block size on transaction throughput and latency

Irrespective of the block size, generating blocks is computationally expensive since

they need to be cryptographically signed [78]. This is true whether the ordering

service is designed using a crash-fault tolerant messaging service like Kafka or using

a BFT consensus mechanism. Additional performance implication of using BFT

style consensus mechanism is that the latency increases significantly as the number

of peers increases [79]. Since block creation and ledger write take the longest time,

both of which are found to be independent of the block size, from our analysis (ref.

Figure 7.5), we show that the maximum throughput increases significantly as the

block size increases, albeit with an increase in latency. Similar observations are

made empirically by authors in [22] as well. However, authors in [58] observed that

the maximum throughput starts tapering off after a particular block size. Their

experiments were done with HLF v1.0 where the VSCC check was not parallelized,

and hence the committing peer was the bottleneck [41]. We need to repeat our

86

experiments with block sizes larger than 120 to ensure that this problem cannot be

reproduced for HLF v1.1 onwards.

Another implication of block size is the block transmission time, which is a big

problem in large overlay networks such as Bitcoin [54, 21]. It is critical to ensure that

the high percentage (if not 100%) of peers should receive the block before the next

block is dispatched. This prevents an unfair advantage to peers that receive blocks

much before the other peers [21]. In a permissioned blockchain network, the location

of the peers is known, and hence the latency between the committers and the ordering

service is well known; hence the block size (or frequency based on expected requested

arrival rate) should be decided to prevent any unfair advantage. Fortunately larger

block sizes are more likely to be throughput bound than latency bound [54, 21],

hence preventing unfair advantage to peers located disproportionately closer to the

ordering service than others. Also for larger block sizes, the system throughput

would not get affected by the block transmission time [78].

Regarding batch timeout, although it has no performance implication in high

throughput systems (as we show in Section 7.5.2), it is an essential parameter to

tune for low throughput but latency sensitive services such as IoT to bound the

expected latency.

6.8 Related Work

In this section, we discuss papers that provide empirical analysis for Fabric V1 and

other blockchain platforms. Note that the related research work covering Fabric v0.6

is discussed in Section 4.4.

6.8.1 Hyperledger Fabric V1

Performance of Hyperledger Fabric v1.0 was studied extensively by Thakkar et al. in

[41], where they vary five tunable parameters: block size, endorsement policy, number

87

of channels, number of vCPUs for peers, and key-value database (GoLevelDB vs.

CouchDB). They observed that VSCC validation is a performance bottleneck, but

can be parallelized easily. Validation of endorsement policies was particularly time-

consuming for policies with a large number of organizations (each with a unique

signature) and deeply nested policies. The system scaled well with an increasing

number of channels if the number of vCPUs allocated to the channel were greater

than or equal to the number of channels. They also observed that CouchDB was

much slower than GoLevelDB since it runs in a separate container from the peer

and peer reads/writes using https REST API calls. In summary, their research

resulted in three optimizations for Fabric: parallelization of VSCC validation, cache

for Membership Service Provider (MSP), and bulk read/write for CouchDB, all of

which were incorporated in release v1.1, that was studied in [22] and our work.

Androulaki et al. [22] presented extensive details of Fabric V1. For performance

evaluation, they developed an application called Fabcoin using the data model is

similar to the Bitcoin-style UTXO8, where previous incoming transactions need to be

spent to issue new transactions, thus consecutive transactions are independent. From

the latency breakup across the three transaction phases, they found that ordering

phase takes the longest, followed by validation. Within the validation phase, the

VSCC validation takes the longest, followed by ledger write and MVCC validation.

These observations are consistent with ours.

In contrast to [22, 41] where they run peers on virtual machines in a cloud dat-

acenter, we run our nodes on physical machines. Also, [22] used Solid-state Drive

(SSD) as opposed to HDD in our case, perhaps why their ledger write latencies are

much lower.

Baliga et al. [58] also evaluated the performance of Fabric v1.0. In their workload,

they vary the percentage of read/write transactions, including null workload (no read

8 https://bitcoin.org/en/glossary/unspent-transaction-output

88

or write). As the transaction arrival rate increases, the read workload throughput

increases, however, the write and even the null workload throughput tapers off. Thus

the performance of a Fabric network is limited by the three-phase transaction. Their

unique contribution is the microbenchmarks, where they vary the a) read-write set

size, b) size of key-value store database, c) chaincode payload. Note that they used

‘solo’ ordering service in their experimental setup, which provides no crash-fault

tolerance and is not expected to be used in a production deployment.

Sousa et al. [78] integrated BFT-SMaRt [73] as an ordering service for Fabric V1,

and present performance analysis. They hypothesize three potential bottlenecks for

throughput: a) rate of ordering blocks by BFT-SMaRt consensus process, b) no. of

blocks signed per second, c) size of generated blocks. To evaluate the bottleneck due

to signature generation, they develop a benchmark and run it on a 16-core system,

and find it reaching 84k signatures per second. They evaluate the HLF system in

a LAN environment by varying the no. of peers for ordering service (4, 7, 10), the

no. of receivers (1 to 32), and the size of the transaction proposal (40 bytes to 4

kB). They find a) throughput decreases as no. of receivers increase, but the rate

of decrease is not much for larger transaction size (1 to 4kB). This is because, for

larger block sizes, the overhead of consensus protocol dominates the overhead of

block transmission. For a larger number of receivers, the throughput saturates in

spite of the block size or the number of orderers. The authors also deployed the HLF

in a geo-distributed setting over Amazon Web Services data centers. They found

that latency is in the range of 500 ms, and does not vary by the block size. Their

performance analysis is focused only on the ordering service.

6.8.2 Public blockchain networks

The two most popular public blockchain networks are Bitcoin [2] and Ethereum [8].

They operate over a large overlay network, which means peers receive blocks at in a

89

wide range of propagation times. Croman et al. [21] study the performance issues

in Bitcoin networks and measure throughput and latency in Bitcoin as a function of

block size and block interval. Since transactions are committed in blocks, the highest

tx throughput is effectively capped at maximum block size divided by block interval.

Their goal was to find the optimal block size and interval such that it maximizes

the transaction throughput and/or minimize latency. Following up on the Bitcoin’s

performance study conducted by Decker and Wattenhofer [54] in 2012, they repeat

the measurement studies in 2014-15. They observed the 10%, median and 90% block

propagation times are 0.8 sec, 8.7 sec., and 79 sec. respectively. The average block

size is 540 KB. They also observe that above 80kB block size, the propagation times

are throughput bound (as opposed to latency bound), and it grows linearly with the

size of the block. Given the current overlay network and 10 min. block interval,

for blocks to propagate to 90% of peers within ten min., they estimate that the

block size should not be more than 4 MB in size, which corresponds to at most

27 transactions/sec. Given the high bandwidth per node, it is surprising that the

overall system bandwidth is so low. They suspect two reasons for this bottleneck.

One, there are repeated messages for the same transaction, by gossiping about a

transaction and then mining it. Second, there is no pipelining of messages for a

transaction, which means the net latency is the sum of latencies of all links.

Weber et al. [80] studied the time to commit characteristics for Bitcoin and

Ethereum. Across both platforms, the time to commit is significantly affected by the

out-of-order arrival of transactions (child transactions before parents in case of Bit-

coin and higher nonce before lower in case of Ethereum) and transaction fee included

by the issuer (called gas price in Ethereum). It is assumed that the transactions are

committed in the main chain with a high probability with six successive blocks in

case of Bitcoin and 12 in case of Ethereum. Overall, the time to commit has a

high variance ranging from minutes to days, which is unreasonable to be useful in

90

consortium blockchain networks that are targetted by Hyperledger Fabric.

6.8.3 Performance evaluation framework

Given the complexity of conducting end-to-end testing of such systems, both the re-

search and product-development communities have recognized the need for a bench-

marking tool that would interface with different blockchain platforms and benchmark

workloads. Auh Dinh et al. [57] presented the blockbench framework for quantitative

analysis of permissioned blockchain networks as a data processing platform. To gain

insights into the inner workings of the blockchain platforms, they propose dividing

the architecture into the following four layers: consensus layer for the consensus pro-

tocol, data model layer for the ledger and related data structures, execution engine

layer for the runtime execution of smart contracts and application. They developed

separate micro-benchmarks to gain insights into the performance characteristics of

each layer.

Different blockchain platforms are developed with varying assumptions of trust

in mind, which results in performance metrics that are defined inconsistently. Thus,

it is hard to compare performance metrics across them. Hyperledger Caliper [23] is

a benchmark execution platform that has been developed to address this challenge.

Their goal is to present the performance evaluation measurements consistently across

all platforms. It interfaces with Hyperledger blockchain projects such as Fabric,

Sawtooth Lake, Iroha, and Composer.

Both frameworks mentioned above are available in open-source.

6.9 Future Work

Empirical analysis of blockchain networks is an exciting area of research. Although

blockchain brings enormous promises, given the poor performance of mainstream

blockchain networks such a Bitcoin and Ethereum, some of the potential adopters of

91

this technology remain skeptical. However, given the promising performance numbers

of permissioned blockchain networks deployed in the field [81, 49], there is enormous

interest and excitement in the community. After all, practitioners are always excited

to see real metrics. From the perspective of performance modeling, we need to

parameterize our models using datasets from setups that are the most representative

of real-world usage. Also, we need to validate the model for a wide range of use-cases

and configurations. We outline the following directions of work

1. Model parameterization for transaction-level parameters

We find that the popular distributions do not seem to fit very well. One alter-

native to consider is phase-type distributions [82]. This could further improve

our model validation results.

2. Model validation using cross-validation techniques

Currently, model parameterization and validation (Section 7.4) is done using

entire dataset. One could consider k-fold cross validation.

3. Experimental Setup in a Wide area network (WAN)

Most of the research work on empirical analysis on Hyperledger Fabric V1 is

done in a setup where all peers are deployed with a lab (our case, [58]) or

within the same datacenter ([22, 41]). Such a setup would provide an envi-

ronment comparable to deploying the Fabric network using IBM Blockchain

service9. However, for security and data confidentiality reasons, many organi-

zations would prefer to deploy their peer in their datacenter (or their preferred

public cloud service provider). Thus it is critical to measure and analyze the

performance in a WAN setting, where peers and orderers are located in different

datacenters. It would significantly improves the security and fault-tolerance at

the cost of performance. To utilize our model, measurements for model pa-

9 https://www.ibm.com/blockchain

92

rameters need to be collected in some of the popular deployment settings and

validated. Then our model can provide estimates for other similar deployment

settings and use-cases.

93

7

Performance Modeling of Hyperledger Fabric V1

As the HLF project is evolving and maturing, it is imperative to model the complex

interactions between peers performing different functions. Such models provide a

quantitative framework that helps compare different configurations and make design

trade-off decisions. In this chapter, we present a performance model of Fabric V1 us-

ing Stochastic Reward Nets (SRN) to compute the throughput, utilization and mean

queue length at various peers as a function of various system parameters. Just like

multiple subsystems of the HLF are “pluggable”, we ensure the corresponding sub-

models are pluggable as well. With this model, we can ask various what-if questions,

such as

1. How does the throughput, utilization and mean queue length vary at each peer

with an increasing transaction arrival rate?

2. If the peer validates transactions in a pipeline as opposed to batches, will the

overall system throughput increase?

3. If there are multiple endorsing peers per organization, how much performance

speed-up do we get?

94

The contributions of this research are as follows:

1. A comprehensive performance model of the Fabric V1 blockchain network.

For Fabric’s unique blockchain network architecture, it captures the key steps

performed by each subsystem as well as interactions between them.

2. Analysis for critical what-if scenarios that system developers and practitioners

care about.

3. Validate the model with a multi-node experimental setup.

This chapter is an extended version of our published work [75]. Some of the text,

figures, tables in this chapter are reprinted, with permission, from “H. Sukhwani, Nan

Wang, Kishor S. Trivedi, and Andy Rindos. Performance Modeling of Hyperledger

Fabric (Permissioned Blockchain Network). In IEEE International Symposium on

Network Computing and Applications (NCA), 2018.”

7.1 SRN model of the system

TArr

λC

PC TPr

PEn0

PEn1

TEn0

TEn1

P′
En0

P′
En1

TTx POS

TOS

PVSCCTVSCCP′
VSCC

VIPMVCCTMVCCPLedgerTLedger

20

M

M

M1

Tx endorsement [AND(Peer 0, Peer 1)] Block creation

& Consensus

Block Validation & Commit

{
#(PC) ∗ µpr, if [#(PC)] <= 4

4 ∗ µpr, otherwise
rate(TPr) =

{
#(PVSCC) ∗ µvalidate, if [#(PVSCC)] <= CPUmax

CPUmax ∗ µvalidate, otherwise
rate(TVSCC) =

Figure 7.1: SRN model of Hyperledger Fabric V1 network

The SRN model for a single-channel Fabric network with one client, two endorsing

peers (AND()) and one peer running the validation logic is shown in Figure 7.1.

95

Transaction requests follow a Poisson arrival process with rate λC. Maximum pending

requests are capped to the no. of threads in workload generator (20 in our case).

Client prepares the endorsement request and sends it to the endorsing peers (say

peer 0 and peer 1) (transition TPr, which includes transmission time). Peers endorse

the transaction (transitions TEn0 and TEn1 respectively). When the client receives a

response from both peers, the client sends the endorsed transaction to the ordering

service (transition TTx), indicated by a token deposited in place POS. After block size

pending transactions (denoted by M), a block of transactions is created and delivered

to the committing peers (transition TOS). The committing peer first performs a

VSCC validation all the transactions in a block in parallel, limited by the number

of logical processors (cores/vCPUs) in the peer (CPUmax). Then it performs MVCC

validation for all transactions serially (transition TMVCC). Finally, all transactions

in the block are written to the local copy of the ledger (transition TLedger). Both

transitions TMVCC and TLedger are captured at a block level. For reasons discussed in

Section 7.5, we do not consider block timeout in this model. Note that we implicitly

assume that all transactions are of the same complexity and independent of each

other. In summary, the three phases of a Fabric transaction can be seen in the SRN

model.

We obtain the metrics from our model as follows. The throughput of a transaction

phase corresponds to the rate of the corresponding transition, using function rate()

in SPNP [83]. E.g., the rate of transition TLedger signifies the block throughput of

the system (multiply by M to obtain transaction throughput). The utilization of a

transaction phase is computed by the probability that the corresponding transition in

SRN is enabled, using function enabled(). For transitions with function-dependent

marking rate (such as TVSCC), the average utilization across all logical processors is

computed using reward functions. The mean queue length of a transaction phase

can be obtained by the number of tokens in the corresponding phase, using function

96

mark(). E.g., the mean number of tokens in place POS signifies the mean queue

length at the ordering service.

7.2 Model Parameterization

We perform test runs for each set of configuration parameter values described in

Section 6.4 and collect the log files, from which we derive the required output metrics.

Depending on λC , each test run consists of 7k to 30k transactions, resulting in 7k to

30k samples for transaction level parameter values and 150 to 900 samples for block-

level parameter values. To ensure that the parameter values are consistent across

various groups, we perform Analysis of Variance (ANOVA) F-test [63] to see if there

is a statistically significant difference in means, followed by multiple comparisons

procedure using Tukey’s Honest Significance Test [63, 84]. Thus, we derive our

parameter values from a large dataset.

In our current work, we assume the firing time for all transitions is exponentially

distributed. In our future work, we plan to do a distributional analysis and choose the

best-fit distribution for each transition (preliminary results shown in Section 6.5).

Since our validation results are good, we feel confident about our choice. With

this choice, the underlying stochastic process is a continuous-time Markov chain

(CTMC), and hence we can analyze our models using analytic-numeric solutions

(Section 7.5). If the firing time for transitions were hypoexponential or Erlang or

hyperexponentially distributed, then the the underlying stochastic process would still

be a CTMC. Otherwise, the model solution could be obtained only using simulation

techniques.

The parameter values for ‘open’ transactions are summarized in Table 7.1. Tran-

sitions TMVCC and TLedger are measured at a block level since the measurements are

too small for each transaction. Time to process messages at client (TPr), and time

to prepare a block (TOS) also includes the transmission time to the peer. Regarding

97

TOS, although the current Kafka based ordering service does not have a notion of

consensus, in future when Byzantine fault tolerance (BFT) consensus protocols are

implemented, this transition will also cover time to consensus.

Table 7.1: Parameter values for SRN model transitions for ‘open’ transaction

Parameter (SRN transition) Block Size Mean time (ms) Rate (ms´1)

Client processing (TPr) – 6.47 0.155

Endorsement (TEn0, TEn1) – 3.25 0.308

Transmit to Ordering service (TTx) – 5.22 0.192

Block creation and delivery (TOS)
40 75.74 0.013
80 81.60 0.012
120 93.56 0.011

VSCC validation (TVSCC) – 2.52 0.397

MVCC validation (TMVCC)
40 2.56 0.391
80 5.10 0.196
120 7.20 0.139

Ledger write (TLedger)
40 207.80 0.0048
80 208.30 0.0048
120 188.40 0.0053

The system-level operations that correspond to each SRN transaction are as fol-

lows. Endorsement includes transaction simulation (using application chaincode)

and proposal endorsement (using ESCC system chaincode). Due to difficulties in

measuring, it does not include the pre-processing stage that checks the transac-

tion proposal header, the uniqueness of the transaction and the access control list

(ACL). VSCC validation includes check whether transactions is properly formed

and signed, validation of transaction with VSCC and endorsement policy. MVCC

check includes validating the key-value pairs, range query and hashed key (see

state based validator.go file in Fabric source code). Ledger write includes com-

mitting block to storage, state database and history database (blockchain).

7.3 Model Validation

Let us analyze the overall system model (Figure 7.1) for a network using AND()

endorsement policy with CPUmax “ 4 for VSCC validation and various block sizes.

98

60

90

120

150

60 90 120 150
Client Tx. arrival Rate (λC) (per sec.)

T
hr

ou
gh

pu
t (

tx
/s

ec
.)

Model Empirical

(a) block-size = 40

60

90

120

150

60 90 120 150
Client Tx. arrival Rate (λC) (per sec.)

T
hr

ou
gh

pu
t (

tx
/s

ec
.)

Model Empirical

(b) block-size = 80

Figure 7.2: Model validation comparing overall system throughput

10

20

30

40

50

60 90 120 150
Client Tx. arrival Rate (λC) (per sec.)

M
ea

n
Q

ue
ue

 L
en

gt
h

Phase OS OS (m) LWrite LWrite (m)

0

1

2

3

4

60 90 120 150
Client Tx. arrival Rate (λC) (per sec.)

M
ea

n
Q

ue
ue

 L
en

gt
h

Phase VSCC VSCC (m) MVCC MVCC (m)

Figure 7.3: Model validation comparing mean queue length at various transaction
phases with empirical measurements (m) (block-size = 80)

Unfortunately, the underlying Markov model has a huge space-space, and we could

not solve the full system model using analytical-numeric solution. Hence we take the

simulation approach using SPNP.

We first validate our model by comparing the overall throughput computed from

the model with the empirical results. In Figure 7.2, we plot the results for block

sizes 40 and 80. Thus, we validate our model for the output metric that is the most

intuitive to the user.

Next, we validate our model by comparing a critical system-internal metric which

is ‘mean queue length’. We chose ‘mean queue length’ since it was reliable to measure

and provides intuitive insights into the system performance. we compute the mean

queue length at the ordering service (OS) and critical processing stage within a peer

99

(VSCC validation, MVCC validation and Ledger Write (LWrite)) and compare it

with the empirical results. We validated our results for different client arrival rates

and different block sizes.

Our results are shown in Figure 7.3. We observe that all measurement results

(marked as (m), in darker color) are comparable to the model results (lighter color)

at different client arrival rates. The results are similar for other block sizes as well.

Hence we consider our model validated. Unfortunately, we were not able to reliably

measure the queue length at the endorsing peer from the peer logs. However, since

the results match at four other measurement points, we leverage its results from our

model.

7.4 Overall system analysis

From our model results, let us visualize the utilization and mean queue length (Fig-

ure 7.4) at each transaction phase with increasing λC . We compute the utilization

for client processing and transmission to ordering service as well. We find that the

transmission from client to the ordering service is a performance bottleneck with a

sharply rising utilization, followed by the endorsing peer. The queue length at the

ordering service/ledger write is expected to be large since it is waiting for block size

transactions before generating/committing a block.

In our lab setup, at high client arrival rate, transactions tend to timeout (pre-

sumably due to queuing delays) and fail, although peers or the ordering service is

not particularly busy. It also explains that the transmission time of endorsed trans-

actions to the ordering service is a performance bottleneck. From our measurements,

it is hard to say whether the delay is due to network transmission time or due to

internal queuing at the ordering service. Assuming that this delay is not a prob-

lem in another setup (replace TTx with an immediate transition), let us compute

the maximum throughput possible in this network. In our model, we keep increas-

100

0

25

50

75

100

200 400 600

U
til

iz
at

io
n

(%
)

Phase
Client

EN

Tx to OS

OS

VSCC

MVCC

LWrite

0

20

40

200 400 600
Client Tx. arrival Rate (λC) (per sec.)

M
ea

n
Q

ue
ue

 L
en

gt
h

Figure 7.4: Utilization, mean queue length at various transaction phases (block-size
= 80)

ing the client transaction arrival rate until the utilization at any transaction phase

reaches 90%. We also consider a scenario where there are multiple endorsers per org.

(Enmax), using marking-dependent firing rate for transitions TEn0,TEn0. From our

results in Figure 7.5, we see that the maximum throughput increases significantly as

the block size increases, albeit with an increase in mean latency (not shown). When

Enmax “ 1, the bottleneck is the endorsing peer. When Enmax “ 4, the bottleneck is

the ledger write. Thus the maximum system throughput can tremendously increase

(especially for larger block sizes like 120) if there are multiple endorsers per org. This

is feasible in systems where concurrent transactions are touching independent set of

key-value pairs and thus can be processed in parallel.

101

200

300

400

500

40 60 80 100 120
Block Size

M
ax

. T
hr

ou
gh

pu
t (

T
x/

se
c.

)

Max. endorsing threads per Endorser 1 4

Figure 7.5: Impact of block size, multiple endorsers on max. throughput

7.5 Model Analysis

In the following three subsections, we analyze the subsystem corresponding to each

transaction phase. All analysis in this Section is done using analytic-numeric solution

in SPNP.

7.5.1 Endorsement Process

Pstart ITx

PEn0

PEn1

TEn0

TEn1

Phold

Pwait Iwait

[g endor]

Pend

N

N

N

{
1, if [#(Pwait)] > 0

0, otherwise
[g endor]OR =

{
1, if [#(Pwait)] > 1

0, otherwise
[g endor]AND =

Figure 7.6: Generalized SRN model to capture AND/OR endorsement policy be-
tween two peers

The client node is responsible for seeking endorsements on the transaction it is

proposing such that it satisfies the endorsement policy. The endorsement policies are

monotone logical expressions that evaluate to TRUE or FALSE. E.g., endorsement

policy OR(Org1, Org2) means that endorsement from any peer from Org1 or Org2

would suffice. An endorsement policy can be expressed as an arbitrary combination

102

of AND, OR, and k{n expressions, such as OR(Org1, Org2) AND (2/3 of Org3,

Org4, Org5).

The endorsement part of the model in Figure 7.1 represents two peers in an

AND() policy; thus the client waits for a response from both before forwarding the

transaction to ordering service. This model can be easily extended to represent

AND() policy for more peers. To model the OR() and k/n() policies, we flush tokens

from places that did not fire, using variable-cardinality arcs (called viarc()) in

SRNs, shown by arcs with Z sign in Figure 7.6. Also, a guard function is used for

the immediate transition Iwait, which is written similar to the endorsement logical

expression. Thus, complex endorsement policies can be captured easily by extending

the net as shown in Figure 7.6 (without the dotted part) and plugged in the overall

system net in Figure 7.1.

The endorsement process adds significant latency to a transaction. First, the

chaincode executes in a separate Docker container at each peer, adding a reasonable

performance overhead. Second, the client needs to wait for endorsement response

from multiple peers to satisfy the endorsement policy. Let us analyze the mean time

to complete endorsement for different endorsement policies in Table 7.2. We assume

the time to endorsement at each peer is exponentially distributed with rate 0.308

per ms.

Table 7.2: Mean time to endorsement (MTTE) for different policies

Endorsement policy MTTE (ms)

OR (2 peers) 1.623
OR (3 peers) 1.082
AND (2 peers) 4.870
AND (3 peers) 5.952
AND (4 peers) 6.764
AND (10 peers) 9.510
AND (20 peers) 11.681
2/3 peers 2.706
6/9 peers 3.233
12/18 peers 3.393
OR (2 peers) AND (2/3 of 3 peers) 3.193

103

Unfortunately, the underlying state-space for this model increases exponentially

with the number of peers. Assuming time to endorsement at each peer follows the

same distribution, we can consider an alternate model where a single place represents

all the peers currently working on the endorsement, which is an input place to a

transition with marking-dependent firing rate. For such a model, the state-space

would increase linearly with the number of peers. We leave the analysis for future

work.

In the current release of Fabric Node SDK, the client waits for replies (or timeout)

from all endorsing peers before the client prepares the endorsement message for

the ordering service. Thus we cannot validate our full-system model with different

endorsing policies. A new feature1 will address this limitation.

7.5.2 Ordering Service

TEn-Arr

λE

POS

ISize

ITimeout

[TO done]

PSize

PTimeout

TOstart TOtrigger

[TO trig]

TOpre TOc TOpostM

N

5

{
1, if [#(TOpost)] == 5

0, otherwise
[TO done] =

{
1, if [#(POS)] > 0

0, otherwise
[TO trig] =

Figure 7.7: SRN model of the ordering service considering block timeout and block
size constraints

The ordering service receives endorsed transactions from the client, orders them

and creates a block of transactions based on block timeout or block size. We would

like to assess the probability that a block was generated due to block size or block

timeout, given an arrival rate of endorsed transactions (λE), block size, and block

timeout.

1 https://jira.hyperledger.org/browse/FAB-10672

104

https://jira.hyperledger.org/browse/FAB-10672

Figure 7.8: Probability of block generated due to timeout as a function of endorsed
transaction arrival rate and block size

Let us consider the SRN model in Figure 7.7. The number of tokens in place

POS represents the pending transactions. A token is deposited in place PSize or

PTimeout depending on whether the block is created due to size limit or timeout.

Since block timeout is deterministic, we approximate this using Erlang distribution

[85, 86], which is shown as a separate net. The immediate transition TOtrigger is

enabled when there is at least one token in place POS. We consider a 5-stage Erlang

distribution where each stage fires with rate 5/(block timeout).

Figure 7.8 presents the contour plot of the probability that a block created due

to timeout condition for timeout = 1.0 sec. For smaller block size, the blocks are

generated due to size limits even at low arrival rates (λE). As block size increases, a

higher endorsed transaction arrival rate (λE) is required to skip the timeout condition

from our model. Thus, we can skip the additional logic to account for the timeout

condition, thereby significantly reducing the size and complexity of the full system

model (Figure 7.1). We repeated the analysis by considering a 25-stage Erlang

distribution for a more accurate approximation of the determistic timeout, but the

results were similar.

In Appendix D, we have shared the SRN code for model (Figure 7.7) and the R

code to generate the contour plot (Figure 7.8)

105

7.5.3 Block Validation & Commit

PMMPP

Tstart

µstart

Tstop
µstop

Tblock-arr

λB

PVSCC TVSCC P′
VSCC

VI PMVCC TMVCC PLedger TLedger

M

2M

M

2

1

2

{
#(PVSCC) ∗ µvalidate, if [#(PVSCC)] <= CPUmax

CPUmax ∗ µvalidate, otherwise
rate(TVSCC) =

{
λB-high, if [#(PMMPP)] = 1

λB-low, otherwise
rate(Tblock-arr) =

Figure 7.9: SRN model of a committer peer, validating and committing blocks of
transations

Let us analyze the performance of the committing peer using the SRN model

in Figure 7.9. Let us assume that blocks arrivals (from the ordering service) follow

a Poisson arrival process with rate λB, each of size M . To limit the size of the

underlying Markov model, we consider a maximum queue length of two blocks in

each phase.

0

25

50

75

100

2 4 6
Block Arrival Rate (λB) (per sec.)

U
til

iz
at

io
n

(%
)

Phase VSCC MVCC LWrite

0

50

100

150

2 4 6
Block Arrival Rate (λB) (per sec.)

M
ea

n
Q

ue
ue

 le
ng

th

Phase VSCC MVCC LWrite

Figure 7.10: Utilization, mean queue length at various block validation stages for
model with block-size = 80, VSCC validation CPUmax “ 4

Let us analyze the model with block size = 80, VSCC validation CPUmax “ 4.

As the block arrival rate increases, the net throughput will increase, however, the

utilization at each stage will increase as well; also the rejection probability of an

incoming block (due to two pending blocks in the queue) will increase too. From the

results shown in Figure 7.10, we find that the utilization and mean queue length of

106

Ledger write increases significantly with increasing block arrival rates; thus it is the

performance hotspot within the committing peer. The mean queue length of ledger

write and MVCC validation is on the higher side since it waits for a block worth of

transactions.

200

250

300

120 140 160 180 200
Mean time to ledger write (ms)

M
ax

. T
hr

ou
gh

pu
t (

T
x/

se
c.

)

Figure 7.11: Sensitivity of the committer peer with mean time to ledger write

From the three parameters in the committing peer model, which parameter has

the most influence on the output metrics? To find out, let us perform sensitivity

analysis [28, 87]. If we had an analytical expression to capture the output behavior

of the system as a function of the input parameters, we would have computed partial

derivatives of the output parameter with respect to input parameters and derived

sensitivity functions for each input parameter. In our case, the committing peer

model has a large state space (1449 states when the block size is 40) and hence it is

challenging to derive a closed-form expression. Rather, we vary each input parameter,

compute its influence on the output metric, and rank the parameters [87]. For our

output metric, we consider the maximum throughput of the committing peer, which

we discussed earlier in Section 7.4. We find that the ledger write has the maximum

influence on the system performance and is our performance bottleneck. Figure 7.11

shows how the maximum throughput of committing peer varies with changing the

107

mean time to ledger write.

Let us consider two scenarios of interest to the system architect.

Bursty arrival of blocks

0

20

40

60

0 2 4 6
Time (sec.)

U
til

iz
at

io
n

(%
)

VSCC (Poisson arr.)
VSCC (MMPP(1) arr.)

LWrite (Poisson arr.)
LWrite (MMPP(1) arr.)

0

25

50

75

100

0 2 4 6
Time (sec.)

M
ea

n
Q

ue
ue

 le
ng

th

MVCC (Poisson arr.)
MVCC (MMPP(1) arr.)

LWrite (Poisson arr.)
LWrite (MMPP(1) arr.)

Figure 7.12: Transient analysis for utilization and queue length of various stages
in a committer with block-size = 80, VSCC validation CPUmax “ 4

Let us consider a scenario in which the committing peer faces a bursty stream of

blocks, consisting of periods of high and low mean block arrival rates. To capture

this, we model the input arrival process using Markov modulated Poisson process

(MMPP) [85, 86]. Let us consider the extended SRN model (shown in dashed box)

in Figure 7.9 with block size M . When there is a token in place PMMPP, blocks arrive

at a high rate (say 6 blocks per sec.) for the average fraction of time µstart
µstart`µstop

and

low rate otherwise (say 2.25 blocks per sec.). The mean time to start of burst mode

is eight sec. (1
µstart

) and it lasts for a mean time of 2 sec. (1
µstop

). To compare the

results from the model with non-bursty arrival rates, we consider the same average

arrival rate. Thus,

λB “ λB-high ˚
µstart

µstart ` µstop

` λB-low ˚
µstop

µstart ` µstop

We compare the results for the MMPP arrival starting in burst mode (MMPP(1))

with that of a model with Poisson arrival rate λB= 3 blocks per sec. From Figure 7.12,

108

we find that the utilization of Ledger write and VSCC validation stages jumps for

MMPP(1) arrival in the first few seconds. There is a significant jump in the mean

queue length of both MVCC check and Ledger write stages. Overall, the VSCC

validation stage seems to absorb the shock of bursty arrivals quite well. However,

the utilization and mean queue length of ledger write stage is affected the most, and

hence it is critical from a performance perspective. Keep in mind that the blocks are

delivered from the ordering service in a sequence. Thus we need to ensure that the

input queue is sufficiently large and that the committing peer can process the blocks

fast enough. Requesting for a block again fom the ordering service can significantly

slow down the peer.

Pipeline model

Tblock-arr

λB

PVSCC TVSCC PMVCC TMVCC PLedger TLedger

M

2M

Figure 7.13: SRN model of a committing peer in pipeline order

To improve the performance of a committing peer, the authors in [22, 41] proposed

300

400

500

40 60 80 100 120
Block Size

M
ea

n
bl

oc
k

la
te

nc
y

(m
s)

Pipeline

Regular(CPUmax = 1)

Regular(CPUmax = 2)

Regular(CPUmax = 4)

Figure 7.14: Mean latency to complete block validation & commit for pipeline
model vs regular model

109

a pipeline architecture, where each transaction passes through various stages in a

pipeline, as opposed to the current architecture where transactions pass through each

stage in blocks. We assume such a system would have only one logical processor for

the VSCC validation. We assume the same parameter value for VSCC validation

and parameter value divided by block size for MVCC, LWrite. We compute the

maximum throughput for this pipeline model (Figure 7.13) for various block sizes.

Surprisingly, the maximum throughput is comparable to that from the regular model

with CPUmax “ 1. However, mean queue length at MVCC validation is slightly

larger, and that at ledger write is smaller (not shown). The rest of the metrics are

comparable.

Let us compute the latency for a block of transactions using a modified version of

models in Figures 7.9 and 7.13, by removing the transition Tblock-arr and considering

M initial tokens in place PVSCC and an output place Done from transition TLedger.

When M tokens are deposited in place Done, it signifies completion of a block.

We compute the mean block latency for the regular model and pipeline model for

different block sizes (Figure 7.14). As expected, the mean block latency improves

slightly in the pipeline model compared to regular model with CPUmax “ 1. As we

add more CPUs in the regular model, the latency reduces further.

We perform sensitivity analysis for the pipeline model for mean block latency

to the VSCC validation rate. We find that the maximum throughput results are

comparable with that of the regular model with VSCC validation CPUmax “ 2, 4

and so on. Overall, pipeline architecture would slightly improve the block latency,

but would not improve the maximum throughput and other performance metrics

compared to the conventional architecture.

110

7.6 Discussion

7.6.1 Largeness of stochastic model

We used a high-level formalism, i.e., SRN to model the complex interactions of

a Fabric network. A drawback of this approach is that the underlying stochastic

model generated is huge. We are unable to generate the underlying state-space for

the full-system model since it is infinite. Hence we took the simulation approach

(ref. Section 7.4). For the committing peer model (ref. Section 7.5), we considered a

maximum queue length of two blocks at each stage. This truncates the state-space

of the underlying model. We solved this model using analytic-numeric solution.

Interestingly, we find that the model state-space size increases linearly with the

block size.

The largeness problem limits our ability to answer questions regarding the scal-

ability of Fabric networks. In our future work, we would consider a hierarchical

approach and fixed-point iterative solution techniques to mitigate this issue [28, 88].

7.6.2 Limitations of our model

A limitation of our model is that we cannot compute the latency at a specific trans-

action throughput. From our model, we can estimate the mean latency of a block

of transactions (ref. Section 7.5.3). However, this does not account for any queuing

delays at various nodes when the system is “loaded.” Along those lines, this model

also cannot capture transaction failures due to timeout (mainly due to queuing de-

lays). In our future work, we plan to compute the response time distribution of a

transaction using a state-space modeling approach, in lines of work presented in [89].

7.6.3 Threats to validity

One threat to the validity of our results is that we did not use custom VSCC. Custom

VSCC lets the user define additional (business) logic to validate the transactions.

111

Since this is in addition to the endorsement policy signature validation done during

VSCC validation, we feel a higher mean parameter would capture this easily. Note

that authors in [22] used custom VSCC but not the authors in [41]. Another threat is

that our nodes were connected in a LAN setting, as opposed to a wide-area network

(WAN) that would be expected in the real world. In our future work, we plan to

replicate our results by running the Fabric on a cloud service like Amazon Web

Services (AWS).

7.7 Related Work

Decker and Wattenhofer [54] presented a simple model to compute the stale block

generation rate in the Bitcoin network, which takes into account the block generation

and the block propagation process of bitcoin. From their empirical analysis of 10,000

blocks conducted in 2013, they estimated the block generation rate is exponentially

distributed with a mean of around 633 sec (10.5 minutes). For an ensemble of block

sizes and (source, destination) pairs, time to propagate a block is also found to be

exponentially distributed with a mean of 11.37 sec (albeit after correcting some clock

skew). For this single dataset estimated, the empirical stale block rate is comparable

to that from the model (around 1.78%).

Gervais et al. [55] model and analyze the security and performance aspects of

Proof-of-Work (PoW) based blockchain networks. For performance modeling, they

develop a simulator that mimics the block mining and propagation process as a

function of block interval, block size and block propagation mechanism. However,

its output metric is stale block rate, which is not beneficial for our analysis. In

summary, in Proof-of-Work (PoW) based blockchains, the goal is to find the optimal

block interval time that maximizes the throughput and minimizes the stale block

rate (and hence reduce security risk). In case of BFT-based blockchains, the goal is

to ensure that the block consensus and block execution process take much lesser time

112

than the block generation interval (default batch timeout is 1 second, and batch size

is 500).

Papadis et al. [90] developed stochastic models for PoW based blockchain net-

works to compute the block growth rate and stale block rate as a function of the

propagation delay and the hashing power of the compute nodes. Using the assump-

tion that the block generation at each peer is a Poisson process [91] and the block

propagation delays follow an exponential distribution [54], the stochastic process

tracking newly mined or received blocks at ledger in each peer is Markovian. They

truncate the model state space by assuming the block generation rate is much slower

than block propagation delay and provide the stationary distribution and asymptotic

expansions for the long-term growth rate for this model. For systems with 2 nodes

and 5 nodes, the empirical results are comparable to that from the model.

Kocsis et al. [92] motivated the need for performance modeling of blockchain

systems. They presented an outline for a measurement based approach to charcterize

performance of blockchain systems, which can be used to develop quantitative models

for analysis.

In our work described in Section 5, we modeled and analyzed the practical Byzan-

tine fault tolerance (PBFT) consensus process of Fabric v0.6 [29]. Since the architec-

ture of Fabric V1 has significantly evolved compared to release v0.6 [12], the models

discussed in this chapter are not applicable to release v0.6.

7.8 Conclusions

In this chapter, we developed stochastic models for a popular distributed ledger

platform called Hyperledger Fabric. We analyze the full-system as well as the sub-

systems corresponding to each transaction phase in details. We collect data from

a Fabric setup running realistic workload to parameterize and validate our models.

Our models provide a quantitative framework that helps a system architect esti-

113

mate performance as a function of different system configurations and make design

trade-offs decisions.

For an incoming block, since the committing peer validates transactions (VSCC)

in parallel, there is a significant performance improvement if the committing peer is

deployed on a system with a large number of CPUs. It can significantly reduce the

queue length at the VSCC validation as well as let system absorb the shock of a burst

arrival of blocks. However, it is not the performance bottleneck for the committing

peer, since ledger write has the highest utilization.

We also analyzed two hypothetical scenarios: peers endorsing multiple transac-

tions in parallel (same as multiple endorsing peers per org.) and pipeline architecture

for the validator. Transaction endorsement parallelization can significantly reduce

the endorser queue length and increase the maximum throughput of the system if the

endorsement process is the performance bottleneck. The pipeline architecture pro-

vides around 1% improvement in mean block validation latency but offers no other

performance benefit.

114

8

Model Verification & Validation

In this chapter, we summarize our approach of verification and validation of the

models presented in this thesis. Under the desired system and model use-case, model

verification is the process of ensuring that the model conforms with the system

understanding, and model validation is the process of ensuring that the model results

conform with the empirical results [93]. Model verification and validation is an

iterative process which is performed until there is no further improvement. This

process can be summarized in Figure 8.1.

All the models discussed in this thesis are stochastic models. These models are

defined using a high-level paradigm like Stochastic Reward Net (SRN). We use the an-

alytical package Stochastic Petri Net Package (SPNP) [65] to automatically generate

the underlying stochastic models. These models are solved using analytical-numeric

solutions (Sections 7.5) or using simulation techniques (Section 7.4, Chapter 5) pro-

vided by SPNP.

115

System
under test

Conceptual
Model

Computerized
Model

Model
Construction

Model Verification

Model
Validation

M
odeling & AnalysisExp

er
im

en
ta

tio
n

Programming

Data
Validity

Figure 8.1: Model verification & validation process

8.1 Steps for Model Verification & Validation

Following the methodology proposed by Naylor and Finger [94] and summarized in

[28], we outline the following three steps to perform model verification and validation.

8.1.1 Face validation

Face validation is a process of discussing the models with the field experts such that

all parties agree about the model. This discussion starts with the conceptual model

and then translated into the operational model during the discussion itself.

Since Hyperledger Fabric is developed in the open-source and is well documented,

in both systems (v0.6 and V1), we reviewed the system specifications extensively be-

fore we met the field experts. For v0.6, first, we brainstormed the system extensively

within our team (co-authors in [29]) to find a problem of interest (which was PBFT

consensus process) and then prepared the SRN model in a few iterations. Then we

met two experts at IBM RTP face-to-face to discuss our conceptual understanding

of the system followed by a walk-through of the SRN model. Thus we verified our

model. However, this process still missed out one subtle but important aspect of the

116

system, which is time to process incoming consensus. This aspect was found to be

the performance bottleneck in [57]. Without this transition, our output validation

failed.

For V1 which is a more complex system, I acquired a good hand-on understanding

of the system over several months of my internship at IBM Research - Zurich, before

I started modeling it. I prepared the first version of the model and discussed with my

team (co-authors in [75]). Then I reached out to two field experts at IBM Research

- India. Since they were familiar with Petri Nets modeling paradigm, we were able

to discuss the models over emails and phone. I discussed SRN models directly with

them, and we found some mistakes in the Client SDK logic and fixed them.

8.1.2 Input-output validation

Input validation ensures that the input data used is accurate, unbiased, complete,

and appropriate to the physical system [28]. In our models, the inputs refer to the

firing time of all SRN model transitions, which includes the firing time distribution

and its parameter values.

For v0.6, we collected data from a blockchain network deployed in the IBM cloud.

This is an expected use-case for running blockchain networks even in V1 and in the

future. The data collection and analysis process was tedious, and hence we analyze

only 50 randomly chosen blocks across a week of data collection. We perform distri-

bution analysis for all parameters and solve the model using simulation techniques.

Since we had difficulty changing PBFT and Fabric parameters in v0.6, hence for

V1 we decided to setup our blockchain network in our lab. Since we had full access to

the datasets, we collected large datasets and wrote our parsers and scripts to analyze

the data. We performed the distribution analysis for all parameters but found it was

hard to fit distributions for transition-level parameters. For simplicity, we assumed

an exponential distribution for all parameters. Note that for block-level parameters,

117

we found exponential distribution to be a good-fit distribution.

Output validation is ensured by comparing the model results with the empiri-

cal results. For v0.6, we have one output metric (mean time to consensus) along

with confidence interval, which we compare with the observed results and report the

percentage error. For V1, we have multiple output metrics, out of which we chose

four output metrics (mean queue length at four stations) for validation (explained

in Section 7.4). To validate this for a different combination of policy conditions [94],

we chose two system parameters, client arrival rates, and block size. Due to a large

number of data points involved, we present the results graphically.

8.1.3 Validation of model assumptions

We need to ensure that the model assumptions are clearly identified and documented.

For each assumption, we should either be able to theoretically prove that it is correct

or perform statistical hypothesis testing to validate them. In our stochastic models,

our assumptions are either about the model structure or about the firing time of the

transitions.

Regarding model structure, any assumption we made was verified using code

reviews or discussing with field experts. One example in HLF is whether a single

peer endorses transactions in a sequence or parallel. From code review, it was clear

that it endorses in a sequence. However, from the log files, it was not as obvious. We

were finally able to verify with the experts that each peer endorses in a sequence.

Given the way the log entries were captured for the endorsement process, it explained

why we had challenges measuring mean queue length at the endorsing peer.

Regarding firing time of transitions, for v0.6 we assume the best-fit distributions

for each SRN transitions. For V1, we assumed an exponential distribution for all

transitions since we encountered challenges in fitting standard distribution functions

for transition-level parameters (Ref. Chapter 6). Future work should focus on vali-

118

dating the model using better-fitting distribution functions.

8.2 Threats to validity

8.2.1 Model Logic and Code

The first threat is the validity of model logic and associated SPNP code. In addition

to the discussion in the above section, for both HLF v0.6 and V1, the SPNP code was

written independently by two authors (me and another co-author in each project)

and we verified the output results, thus verifying the code. We also extensively

brainstormed our model and analysis results. During one such session, for HLF V1,

we figured out that transition TPr (Ref. Figure 7.1) could have marking-dependent

firing rate.

8.2.2 Model Parameters

The next threat is the measurements of the model parameter values. In our models,

the parameter value corresponded to the time difference between the events of when

a task was started and completed. These events are captured in the peer/orderer

log files. Although most of these events were intuitive to identify, some of them had

multiple possible options. To understand the event messages in depth, I extensively

reviewed the software code along with the log files from test runs and eliminated

a few obvious ones. For others, we collected and analyzed datasets for all possible

combination of time-between-events. From the summary statistics and box-plots,

we could identify time-between-events that might inherently include queuing delays

and eliminated them. Thus, we ensured that we collected the best-possible datasets

for our parameter values. It is worth noting that the measurements involving trans-

mission time across different nodes (like time to transmit endorsement message) had

high variance and were inconsistent across different system configuration settings.

This is pronounced only in transmission of individual transactions rather than in a

119

block of transactions. We feel this happens because transaction message size was

small and hence its latency-bound rather than throughput-bound. Further research

work is required to ensure the accuracy of such measurements.

Another important aspect is the number of samples collected for our analysis.

Each test run lasted for 240 sec., ensuring the system achieves a steady-state. We

also clip the first 20 and last 20 sec. of our dataset as ramp-up and ramp-down

phase. We ensured the samples were collected across different configuration settings.

For parameterization, we merged the datasets that showed no statistically significant

difference in their means (Ref. Section 6.5).

8.2.3 System configuration settings

Another threat to validity is the configuration of our blockchain network setup. For

HLF V1, we deployed the network using the community-recommended approach

[76]. One limitation of our setup is that the nodes were connected in a LAN setting,

as opposed to a WAN. In an ideal world, each organization would setup a peer in

their own datacenter. Given the complexity of setting up and running a Fabric

network, it is likely that many organizations would prefer a cloud service such as

IBM Blockchain to deploy their blockchain network, and hence our assumption is

not as far from reality. Another threat is that we did not use custom VSCC. As

discussed earlier, we feel the implications of custom VSCC can be captured easily in

the corresponding transition parameter and would not require any model rework.

120

9

Conclusions

9.1 Conclusions

In this dissertation, we study Hyperledger Fabric from a performance perspective.

Hyperledger Fabric is an open-source implementation of the distributed ledger plat-

form for running smart contracts in a modular architecture. It is gaining popu-

larity with 400+ proof-of-concept and production implementations across different

industries and use-cases. Our main contribution is a stochastic model that capture

critical steps performed by each subsystem and the interactions between them. We

also provide a detailed empirical analysis of model parameterization and validation.

Blockchains have spawned a new era of systems development, and this thesis sets

the foundation for future research in modeling and analysis in this area.

The models and analysis in this thesis are useful for both the system developers

and the architects deploying Fabric in the field. System developers gain insights

into the inner-workings of the system that provides guidance on which subsystems

and functions to improve and its implications on the system performance. Archi-

tects can use the models to estimate performance as a function of different system

121

configurations and make design trade-off decisions.

We developed models for two different releases of Fabric, viz. v0.6 and V1. Both

releases support a different architecture. HLF v0.6 follows a traditional state-machine

replication architecture similar to many other blockchain platforms. We developed a

detailed and scalable model for the PBFT consensus process, from which we estimate

the “mean time to complete consensus.” To parameterize and validate our model, we

created the Fabric network using the IBM Bluemix service. We run a production-

grade IoT application to generate a significant workload. We used the data collected

in the log files to parameterize and validate our models. For four peers, we find the

solutions from the SRN model are comparable to the empirical results, with a relative

error of 7%. Using the validated SRN model, we analyze the PBFT consensus process

up to 100 peers and find that the mean time to consensus increases by 5.34 times

for 100 peers compared to that for four peers if the transmission delays are of the

same order of magnitude as the processing and queuing delays. However, in a real-

world scenario where peers are geographically dispersed, and transmission delays are

significant, the percentage increase in the meantime to consensus would not be as

significant for a large number of peers.

HLF V1 follows a novel execute-order -validate architecture where each trans-

action undergoes three phases: endorsing, ordering, and validation. We develop a

detailed model using Stochastic Reward Nets (SRN) from which we can compute

the throughput, utilization, and mean queue length at peers corresponding to each

phase. To parameterize and validate our model, we setup a Fabric network in our lab

and run a realistic workload using Hyperledger Caliper. We summarize our findings

as follows:

• Endorsing - Endorsing policies that require endorsements from a large number

of organizations can add significant latency. E.g., AND() policy across many

122

peers. However, its impact on the throughput can be mitigated if there are

multiple peers within an organization for transaction endorsement, effectively

parallelizing endorsements within an organization.

• Ordering - At the ordering service, waiting to prepare and prepare the block are

the performance bottlenecks of Fabric V1 network. Its impact on throughput

can be mitigated by using a larger block size, albeit with an increase in latency.

• Validation - Transaction validation check using VSCC is a time-consuming

step, but it is embarrassingly parallel; Hence its performance impact can be

easily mitigated by using peers with a large number of cores/CPUs. It also

helps the validating peer absorb the shock of a burst arrival of blocks. We also

analyzed a pipeline architecture for committing peers but found no significant

performance improvement.

9.2 Fabric Performance Management Infrastructure

Stochastic models developed in this dissertation can be utilized in a Fabric network

management infrastructure as shown in Figure 9.1. A Fabric network is expected to

be deployed in the cloud, where peers for different organizations are deployed within

the same data-center or different data-centers. Monitoring infrastructure collects re-

quired data from all the peers, ordering service, and SDK nodes. This data is used to

parameterize the model. The results from the models (such as expected throughput,

latency, mean queue length at each peer) can be validated with the monitoring data.

The results of model validation are useful to tune the parameterization, like consid-

ering alternate parameter models, so that the model estimates improve. The result

from the model can be used for analysis for short-term (like next several minutes or

hours) or can be used for long-term (like weeks or months). The results are shared

with the administrators as well as with an automated network manager. The man-

123

Fabric network

Monitoring Model
Parameterization

Stochastic
Models

Fabric
management platform

Org0 Org1 Org n...

Model
Validation

Short-term
Analysis

Long-term
Analysis

Admin.

Automated
manager

Figure 9.1: Fabric Network management infrastructure

agement platform is co-owned by different organizations, ensuring that the network

control is decentralized.

Compared to a traditional cloud infrastructure, there are additional challenges

involved in managing permissioned blockchain infrastructure. First, the monitoring

infrastructure needs to be co-owned by multiple organizations, since a different or-

ganization owns each peer. One needs to ensure that the monitoring infra maintains

privacy and confidentiality of transactions. Second, the decisions that affect the en-

tire network (such as block size) need to be agreed upon by all parties using some

consensus approach.

An example use-case is as follows. Suppose a consortium Fabric network needs

to guarantee a specific service-level agreement (SLA) for transaction latency. If the

Fabric network is experiencing higher than expected latency, it could be because

any of the three transaction phases are taking longer than expected. If the latency

increase is in the endorsing phase, the network manager can consider deploying more

124

endorsers in each org. or consider changing the endorsement policy (after necessary

agreement from all orgs.). If the ordering phase is taking longer than expected,

the manager can consider increasing the number of Kafka brokers, or decreasing the

block size (yet ensuring the throughput SLAs are met). If the validation phase is

taking longer than expected, the manager could recommend peers to live-migrate to

a system with better hardware, such as more CPU cores.

9.3 Future Research Directions

We summarize our research as follows

9.3.1 Systems & Performance

As an extension to our research on modeling PBFT consensus process, it will be useful

to validate the model for a large number of peers and a wide range of PBFT param-

eters and system configurations. Also, combine the consensus and block execution

models to compute the throughput and latency for order-execute style blockchains

as a function of the number of peers, time to execute a transaction, and time to

update data store. Since order -execute style design is popular across blockchain

platforms, it will worth extending the research to other variants of PBFT (such as

SBFT, BFT-SMaRt) and other popular consensus protocols such as Raft [74].

Blockchain networks are being deployed across a wide range of domains such as

Banking/Finance [49, 81], IoT, and supply chain [19]. It will be useful to study the

performance and dependability of blockchain platforms from a domain perspective.

Each domain has a varied set of requirements, transaction arrival, and execution

process, which will impact the system performance. Although generic blockchain

platforms such as Fabric are designed to address a variety of use-cases, it is worth

doing performance evaluation with specific industry use-cases in mind. Also, define

crisp and clear performance metrics that make sense for that domain.

125

Just like public blockchains, permissioned blockchains are also expected to run

across a wide area network (WAN). Although the number of peers will be a magnitude

or two smaller, peers are expected to be deployed across different data centers spread

across the world. Hence network latency would still have a significant performance

impact. Since block verification at each relay node was a significant contributor to

high propagation delay in Bitcoin networks [54], we need to ensure such mistakes are

not repeated in the permissioned blockchain space.

Although blockchains provide a tamper-proof record of transactions, the system

executing the transactions might be compromised. One way to mitigate this is to

run the application inside a trusted execution environment (TEE) such as Intel SGX

[95]. However, it would have some performance implications, resulting in a trade-off

between performance and privacy.

Energy usage is a popular topic of discussion in public blockchain space [96, 97].

Such research is needed from the context of permissioned blockchain space as well.

Also, study the trade-off between performance and energy usage.

9.3.2 Adoption & Usability

As computer engineers and scientists, it is easy to get obsessed with performance

metrics such as transaction throughput and latency in elaborate details. However,

it is useful to remind ourselves how much time such a transaction would have taken

without a blockchain in place. In an informal conversation with a friend working

in one of the top financial services companies in the US, where they are moving

the company-internal settlement process to a private blockchain, they can resolve

transactions in minutes what would previously take 2-3 days. Given the significant

improvement in their efficiency, a latency speed-up of a few ms would not matter

as much. A similar sentiment is echoed in the report [81] published by the Royal

Bank of Scotland, where for a cross-border clearing and settlement system they found

126

throughput of 100 tps among six banks good enough. Thus, we should continue to

focus on improving the usability and adoption of permissioned blockchain networks.

Some of the challenges for broad adoption of blockchain-based systems include in-

tegrating blockchain systems with existing IT infrastructure [49] and training the

technical personnel in writing good bug-free smart contacts [98].

Standardization efforts of blockchain technologies have started picking up as well.

Some of the prominent organizations working on it are NIST [1], IEEE [99], Inter-

national Organization for Standardization (ISO) [100], International Telecommuni-

cation Union (ITU) [101], and various working groups under Hyperledger.

127

Appendix A

Hyperledger Fabric V1 network setup

A.1 Hyperledger Fabric software installation & network setup

The instructions are also available here1.

Installation of Hyperledger Fabric

On each physical node, run the following setps

1. Basic steps

sudo apt i n s t a l l l i b t o o l l i b l t d l ´dev

2. Install docker-ce

Refer:

https :// docs.docker.com/install/linux/docker -ce/ubuntu /\# install -docker -ce -1

sudo apt´get update
sudo apt´get i n s t a l l \

apt´t ransport´https \
ca´c e r t i f i c a t e s \
cu r l \
so f tware´prope r t i e s ćommon

cu r l ´fsSL https : // download . docker . com/ l inux /ubuntu/gpg | sudo apt´key add ´
sudo apt´key f i n g e r p r i n t 0EBFCD88
sudo add´apt´r e p o s i t o r y \

"deb [arch=amd64] https :// download.docker.com/linux/ubuntu \

$(lsb_release -cs) \

stable"

1 https://bitbucket.org/hvs2/fabric-perf-model/src/master/network_setup/

128

https://bitbucket.org/hvs2/fabric-perf-model/src/master/network_setup/

sudo apt´get update
sudo apt -get install docker -ce

sudo apt -cache policy docker -ce to remove stale versions of docker -ce

sudo apt autoremove to cleanup apt cache

sudo apt´get i n s t a l l docker´ce =18.03.1˜ ce´0˜ubuntu
sudo docker run he l l o´world
sudo usermod áG docker $USER

At this point, logout and login.

3. Install docker-compose
Refer: https :// docs.docker.com/compose/install /\# install -compose

sudo cu r l ´L https : // github . com/docker /compose/ r e l e a s e s /download /1 . 20 . 1/ docker
´compose´‘uname ´s ‘´ ‘uname ḿ‘ ´o / usr /local/bin /docker´compose

sudo chmod +x /usr /local/bin /docker´compose
docker´compose ´́ ve r s i on

4. Install Go 1.9.1
sudo cu r l Ó https : // s to rage . goog l e ap i s . com/golang /go1 . 9 . 1 . l inux´amd64 . ta r . gz
sudo ta r ´xvf go1 . 9 . 1 . l inux´amd64 . ta r . gz
sudo mv go / usr /local
mkdir ˜/go´workspace
echo ’ export GOROOT=/usr /local/go ’ >> ˜/ . bashrc
echo ’ export GOPATH=$HOME/go´workspace ’ >> ˜/ . bashrc
echo ’ export PATH=$PATH:$GOROOT/bin :$GOPATH/bin ’ >> ˜/ . bashrc
source ˜/ . bashrc

5. Install Python 2.7
sudo apt´get i n s t a l l python2 . 7
sudo apt´get i n s t a l l python´pip
pip i n s t a l l pyyaml

6. Install Fabric
mkdir ´p $GOPATH/ s r c / github . com/ hyper l edger
cd $GOPATH/ s r c / github . com/ hyper l edger
g i t c l one http :// g e r r i t . hyper l edger . org / r / f a b r i c
cd f a b r i c
g i t checkout v1 . 1 . 0
make r e l e a s e
make go t oo l s #Adding this for now

make docker
make peer
make o rde r e r

#While doing ‘make docker ’, if you see the error ‘Cannot connect to the Docker

daemon ’, you probably forgot to do ‘sudo usermod -aG docker \$USER ’.

After this , logout and login.

sudo mkdir ´p /var / hyper l edger /product
sudo chown Ŕ $ (whoami) : / var / hyper l edger

Add the following to .bashrc and ‘source /.bashrc‘
export PATH=$PATH:$GOPATH/ s r c / github . com/ hyper l edger / f a b r i c / bu i ld /bin /

129

Create Docker Swarm network between peers

On one of the peers

docker swarm i n i t ´́ adve r t i s e´addr "ip_addr"

docker network c r e a t e ´́ at tachab l e ´́ d r i v e r ove r l ay mý net
On the rest of peers

docker swarm j o i n ´́ token "token_id" i p addr :2377
Once all done , to stop the network

docker swarm leave

Making changes to Fabric source code

On your computer, do the following

1. Patch the changes (from diff file) to

$GOPATH/ s r c / github . com/ hyper l edger / f a b r i c \

2. Create new Docker images with name, say 1.1.x

cd bu i ld / image/ peer /
docker bu i ld ´t hyper l edger / f ab r i c´peer : x86 64 ´1.1 . x .
cd bu i ld / image/ o rde r e r /
docker bu i ld ´t hyper l edger / f ab r i c´o rde r e r : x86 64 ´1.1 . x .

3. Export the docker images

docker save ´o <path for generated ta r f i l e > <image name>
scp the .tar file to all nodes. There , do the following

docker load ´ i <path to image ta r f i l e >

Other details

The diff files for Fabric source code, and for a new rate-control function for Poisson

arrival process in Caliper are shared here2.

2 https://bitbucket.org/hvs2/fabric-perf-model/src/master/diff_files

130

https://bitbucket.org/hvs2/fabric-perf-model/src/master/diff_files

Appendix B

Environment details of a blockchain network

To conduct a performance evaluation of a blockchain network, here are some of the

environment aspects to consider (alphabetic order)

• Blockchain-specific configuration - Block size and/or frequency

• Consensus protocol - In case the platform offers a pluggable choice

• Data store - In case the platform offers a pluggable choice

• Geographical distribution of nodes - Are the nodes co-located or geograph-

ically distributed? If distributed, where is each node located? Also present the

block propagation time analysis (refer Figure B.1 and [48]).

• Hardware:

– CPU - model, speed, number of cores, number of vCPUs (for Virtual

Machines)

– Disk drive - speed, type (hard disk vs. solid state drive)

– Memory - size, speed, type

• Number of Nodes of each type (peers, validators)

• Software - the software configuration of each node

131

• Workload - the smart contract used, the transaction (+ parameters) mix

invoked by the client. If the smart contract is propriety, at least describe the

complexity, including the no. of reads/writes performed for each transaction

type.

0

25

50

75

100

0 50 100 150 200
Time (ms)

C
um

ul
at

iv
e

pe
rc

en
ta

ge

2

4

6

8

10

25 50 75 100 125
Time (ms)

C
um

ul
at

iv
e

co
un

t

Figure B.1: Block propagation time across the network of peers

We summarize the above list for Hyperledger Fabric as follows:

• Data Store - LevelDB or CouchDB

• Fabric configuration - Batch size (in no. of transactions or MB) and batch

timeout.

• Geographical distribution of nodes:

– Ordering service - OSNs, Kafka brokers, zookeeper nodes

– Peers - Anchor peer and other peers within each organization

– Fabric Client SDKs

– Clients (workload generator)

• Hardware configuration of each node

• Number of Nodes:

– Ordering service - number of OSNs, Kafka brokers, zookeeper nodes

– Peers - no. of peers per organization

– Fabric Client SDKs

132

• Ordering service - Solo or Kafka-based. Future releases plan to support

Byzantine-fault tolerant protocols like Raft.

• Workload

– Application - Chaincode (if non-propriety), type of transactions, size of

each transaction (in KBs), complexity of transaction (in terms of no. of

read/write performed), dependencies between transactions.

– Transaction mix, arrival process of transactions (e.g., periodic or Poisson),

no. of client threads, no. of listener threads.

133

Appendix C

Model and analysis code for Hyperledger Fabric
v0.6

C.1 SRN code for model with n “ 4

Please refer to Figure 5.2. Also available here1.
1 #include <s t d i o . h>
2 #include "user.h"

3 #include <s t d l i b . h>
4 #include <time . h>
5

6 /* global variables */

7 #define PR12Val1 7 .7448
8 #define PR12Val2 1 .50895
9 #define PR3Val1 34.7047

10 #define PR3Val2 1.202207
11 #define TxVal1 1 .41605
12 #define TxVal2 2 .09217
13 #define PR3HypoVal1 2
14 #define PR3HypoVal2 267.9746
15 #define PR3HypoVal3 22.04979
16 #define PR3HypoVal4 0
17 #define QVal1 25 .864
18 #define QVal2 1 .56081
19 #define QueueRate 8 .959
20

21 int f = 1 ;
22 double timeVal ;
23

24 /* Prototype for the function(s) */

25 int gPS0 () {
26 if ((mark ("PP_0p")>= 2∗ f))
27 return (1) ;

1 https://bitbucket.org/hvs2/fabric-perf-model/src/master/srn_code_v0.6/srn_

model_n4.c

134

https://bitbucket.org/hvs2/fabric-perf-model/src/master/srn_code_v0.6/srn_model_n4.c
https://bitbucket.org/hvs2/fabric-perf-model/src/master/srn_code_v0.6/srn_model_n4.c

28 else

29 return (0) ;
30 }
31 int gPS1 () {
32 if ((mark ("PP_1p")>= (2∗ f´1)))
33 return (1) ;
34 else

35 return (0) ;
36 }
37 int gPS2 () {
38 if ((mark ("PP_2p")>= (2∗ f´1)))
39 return (1) ;
40 else

41 return (0) ;
42 }
43 int gPS3 () {
44 if ((mark ("PP_3p")>= (2∗ f´1)))
45 return (1) ;
46 else

47 return (0) ;
48 }
49 int gM0 () {
50 if ((mark ("P_0p")>= 2∗ f))
51 return (1) ;
52 else

53 return (0) ;
54 }
55 int gM1 () {
56 if ((mark ("P_1p")>= 2∗ f))
57 return (1) ;
58 else

59 return (0) ;
60 }
61 int gM2 () {
62 if ((mark ("P_2p")>= 2∗ f))
63 return (1) ;
64 else

65 return (0) ;
66 }
67 int gM3 () {
68 if ((mark ("P_3p")>= 2∗ f))
69 return (1) ;
70 else

71 return (0) ;
72 }
73 int gCReply () {
74 if (mark ("PM0")+mark ("PM1")+mark ("PM2")+mark ("PM3") >= (3∗ f +1))
75 return (1) ;
76 else

77 return (0) ;
78 }
79 int myhalt () {
80 if (mark ("Cend") !=0)
81 return (0) ;
82 else

83 return (1) ;
84 }
85

86 /* ================= OPTIONS ================ */

87 void opt ions () {
88 i op t (IOP SIMULATION,VAL YES) ;
89 i op t (IOP SIM STD REPORT,VAL YES) ;
90 i op t (IOP SIM SEED,35983453) ;
91 i op t (IOP SIM RUNS , 5000) ;
92 f opt (FOP SIM ERROR, 0 .1) ;

135

93 f opt (FOP SIM LENGTH, 20) ;
94 i op t (IOP SIM CUMULATIVE,VAL NO) ;
95 f opt (FOP SIM CONFIDENCE, . 9) ;
96 }
97

98 /* ========= DEFINITION OF THE NET ========== */

99 void net () {
100 /* ====== PLACE ====== */

101 p lace ("PP_0") ; p lace ("PP_0p") ; p lace ("P_0") ; p l ace ("P_0p") ;
102 p lace ("PP_1") ; p lace ("PP_1p") ; p lace ("P_1") ; p lace ("P_1p") ;
103 p lace ("PP_2") ; p lace ("PP_2p") ; p lace ("P_2") ; p lace ("P_2p") ;
104 p lace ("PP_3") ; p lace ("PP_3p") ; p lace ("P_3") ; p lace ("P_3p") ;
105 p lace ("M0") ; p lace ("M1") ; p lace ("M2") ; p lace ("M3") ;
106 i n i t ("M0" , 1) ; i n i t ("M1" , 1) ; i n i t ("M2" , 1) ; i n i t ("M3" , 1) ;
107 p lace ("PPS1_0") ; p lace ("PPS1_2") ; p lace ("PPS1_3") ;
108 p lace ("PPS2_0") ; p lace ("PPS2_1") ; p lace ("PPS2_3") ;
109 p lace ("PPS3_0") ; p lace ("PPS3_1") ; p lace ("PPS3_2") ;
110 p lace ("PS0_1") ; p lace ("PS0_2") ; p lace ("PS0_3") ;
111 p lace ("PS1_0") ; p lace ("PS1_2") ; p lace ("PS1_3") ;
112 p lace ("PS2_0") ; p lace ("PS2_1") ; p lace ("PS2_3") ;
113 p lace ("PS3_0") ; p lace ("PS3_1") ; p lace ("PS3_2") ;
114 p lace ("PM0") ; p lace ("PM1") ; p lace ("PM2") ; p l ace ("PM3") ;
115 p lace ("PS0") ; p lace ("PS1") ; p lace ("PS2") ; p l ace ("PS3") ;
116 i n i t ("PS0" , 1) ; i n i t ("PS1" , 1) ; i n i t ("PS2" , 1) ; i n i t ("PS3" , 1) ;
117 p lace ("Cend") ;
118 p lace ("PPS1") ; p lace ("PPS2") ; p lace ("PPS3") ;
119 p lace ("N01") ; p lace ("N02") ; p lace ("N03") ;
120 p lace ("Pcl") ; i n i t ("Pcl" , 1) ;
121 p lace ("CLeader") ; i n i t ("CLeader" , 1) ;
122

123 /* ====== TRANSITION ====== */

124 imm("tcend") ; guard ("tcend" , gCReply) ; p r i o r i t y ("tcend" , 1) ; probval ("tcend" , 1) ;
125 weibval ("TC0" ,PR12Val1 , PR12Val2) ; weibval ("TN1" ,TxVal1 , TxVal2) ;
126 weibval ("TN2" ,TxVal1 , TxVal2) ; weibval ("TN3" ,TxVal1 , TxVal2) ;
127 weibval ("TThink1_1" ,PR12Val1 , PR12Val2) ;
128 weibval ("TThink1_2" ,PR12Val1 , PR12Val2) ;
129 weibval ("TThink1_3" ,PR12Val1 , PR12Val2) ;
130 weibval ("TPPS1_0" ,TxVal1 , TxVal2) ; weibval ("TPPS1_2" ,TxVal1 , TxVal2) ;
131 weibval ("TPPS1_3" ,TxVal1 , TxVal2) ;
132 weibval ("TPPS2_0" ,TxVal1 , TxVal2) ; weibval ("TPPS2_1" ,TxVal1 , TxVal2) ;
133 weibval ("TPPS2_3" ,TxVal1 , TxVal2) ;
134 weibval ("TPPS3_0" ,TxVal1 , TxVal2) ;
135 weibval ("TPPS3_1" ,TxVal1 , TxVal2) ; weibval ("TPPS3_2" ,TxVal1 , TxVal2) ;
136 hypoval ("TThink2_0" ,PR3HypoVal1 , PR3HypoVal2 , PR3HypoVal3 , PR3HypoVal4) ;
137 hypoval ("TThink2_1" ,PR3HypoVal1 , PR3HypoVal2 , PR3HypoVal3 , PR3HypoVal4) ;
138 hypoval ("TThink2_2" ,PR3HypoVal1 , PR3HypoVal2 , PR3HypoVal3 , PR3HypoVal4) ;
139 hypoval ("TThink2_3" ,PR3HypoVal1 , PR3HypoVal2 , PR3HypoVal3 , PR3HypoVal4) ;
140 guard ("TThink2_0" , gPS0) ; guard ("TThink2_1" , gPS1) ;
141 guard ("TThink2_2" , gPS2) ; guard ("TThink2_3" , gPS3) ;
142 weibval ("TPS0_1" ,TxVal1 , TxVal2) ; weibval ("TPS0_2" ,TxVal1 , TxVal2) ;
143 weibval ("TPS0_3" ,TxVal1 , TxVal2) ;
144 weibval ("TPS1_0" ,TxVal1 , TxVal2) ; weibval ("TPS1_2" ,TxVal1 , TxVal2) ;
145 weibval ("TPS1_3" ,TxVal1 , TxVal2) ;
146 weibval ("TPS2_0" ,TxVal1 , TxVal2) ; weibval ("TPS2_1" ,TxVal1 , TxVal2) ;
147 weibval ("TPS2_3" ,TxVal1 , TxVal2) ;
148 weibval ("TPS3_0" ,TxVal1 , TxVal2) ; weibval ("TPS3_1" ,TxVal1 , TxVal2) ;
149 weibval ("TPS3_2" ,TxVal1 , TxVal2) ;
150 weibval ("TP0" ,QVal1 , QVal2) ; weibval ("T0" ,QVal1 , QVal2) ;
151 weibval ("TP1" ,QVal1 , QVal2) ; weibval ("T1" ,QVal1 , QVal2) ;
152 weibval ("TP2" ,QVal1 , QVal2) ; weibval ("T2" ,QVal1 , QVal2) ;
153 weibval ("TP3" ,QVal1 , QVal2) ; weibval ("T3" ,QVal1 , QVal2) ;
154 imm("TM0") ; guard ("TM0" ,gM0) ; p r i o r i t y ("TM0" , 1) ; probval ("TM0" , 1) ;
155 imm("TM1") ; guard ("TM1" ,gM1) ; p r i o r i t y ("TM1" , 1) ; probval ("TM1" , 1) ;
156 imm("TM2") ; guard ("TM2" ,gM2) ; p r i o r i t y ("TM2" , 1) ; probval ("TM2" , 1) ;
157 imm("TM3") ; guard ("TM3" ,gM3) ; p r i o r i t y ("TM3" , 1) ; probval ("TM3" , 1) ;

136

158

159 ha l t i n g c ond i t i o n (myhalt) ;
160 /* ====== ARC ====== */

161 i a r c ("TM0" , "M0") ; oarc ("TM0" , "PM0") ;
162 i a r c ("TM1" , "M1") ; oarc ("TM1" , "PM1") ;
163 i a r c ("TM2" , "M2") ; oarc ("TM2" , "PM2") ;
164 i a r c ("TM3" , "M3") ; oarc ("TM3" , "PM3") ;
165 i a r c ("TN1" , "N01") ; oarc ("TN1" , "PPS1") ;
166 i a r c ("TN2" , "N02") ; oarc ("TN2" , "PPS2") ;
167 i a r c ("TN3" , "N03") ; oarc ("TN3" , "PPS3") ;
168

169 i a r c ("TC0" , "CLeader") ; oarc ("TC0" , "N03") ; oarc ("TC0" , "N02") ; oarc ("TC0" , "N01
") ;

170 i a r c ("TPPS1_0" , "PPS1_0") ; oarc ("TPPS1_0" , "PP_0") ;
171 i a r c ("TPPS1_2" , "PPS1_2") ; oarc ("TPPS1_2" , "PP_2") ;
172 i a r c ("TPPS1_3" , "PPS1_3") ; oarc ("TPPS1_3" , "PP_3") ;
173 i a r c ("TPPS2_0" , "PPS2_0") ; oarc ("TPPS2_0" , "PP_0") ;
174 i a r c ("TPPS2_1" , "PPS2_1") ; oarc ("TPPS2_1" , "PP_1") ;
175 i a r c ("TPPS2_3" , "PPS2_3") ; oarc ("TPPS2_3" , "PP_3") ;
176 i a r c ("TPPS3_0" , "PPS3_0") ; oarc ("TPPS3_0" , "PP_0") ;
177 i a r c ("TPPS3_1" , "PPS3_1") ; oarc ("TPPS3_1" , "PP_1") ;
178 i a r c ("TPPS3_2" , "PPS3_2") ; oarc ("TPPS3_2" , "PP_2") ;
179

180 i a r c ("TPS0_1" , "PS0_1") ; oarc ("TPS0_1" , "P_1") ;
181 i a r c ("TPS0_2" , "PS0_2") ; oarc ("TPS0_2" , "P_2") ;
182 i a r c ("TPS0_3" , "PS0_3") ; oarc ("TPS0_3" , "P_3") ;
183 i a r c ("TPS1_0" , "PS1_0") ; oarc ("TPS1_0" , "P_0") ;
184 i a r c ("TPS1_2" , "PS1_2") ; oarc ("TPS1_2" , "P_2") ;
185 i a r c ("TPS1_3" , "PS1_3") ; oarc ("TPS1_3" , "P_3") ;
186 i a r c ("TPS2_0" , "PS2_0") ; oarc ("TPS2_0" , "P_0") ;
187 i a r c ("TPS2_1" , "PS2_1") ; oarc ("TPS2_1" , "P_1") ;
188 i a r c ("TPS2_3" , "PS2_3") ; oarc ("TPS2_3" , "P_3") ;
189 i a r c ("TPS3_0" , "PS3_0") ; oarc ("TPS3_0" , "P_0") ;
190 i a r c ("TPS3_1" , "PS3_1") ; oarc ("TPS3_1" , "P_1") ;
191 i a r c ("TPS3_2" , "PS3_2") ; oarc ("TPS3_2" , "P_2") ;
192

193 i a r c ("tcend" , "Pcl") ;
194 i a r c ("TThink1_1" , "PPS1") ; oarc ("TThink1_1" , "PPS1_0") ;
195 oarc ("TThink1_1" , "PPS1_2") ; oarc ("TThink1_1" , "PPS1_3") ;
196 i a r c ("TThink1_2" , "PPS2") ; oarc ("TThink1_2" , "PPS2_0") ;
197 oarc ("TThink1_2" , "PPS2_1") ; oarc ("TThink1_2" , "PPS2_3") ;
198 i a r c ("TThink1_3" , "PPS3") ; oarc ("TThink1_3" , "PPS3_0") ;
199 oarc ("TThink1_3" , "PPS3_1") ; oarc ("TThink1_3" , "PPS3_2") ;
200

201 i a r c ("TThink2_0" , "PS0") ; oarc ("TThink2_0" , "PS0_1") ;
202 oarc ("TThink2_0" , "PS0_2") ; oarc ("TThink2_0" , "PS0_3") ;
203 i a r c ("TThink2_1" , "PS1") ; oarc ("TThink2_1" , "PS1_0") ;
204 oarc ("TThink2_1" , "PS1_2") ; oarc ("TThink2_1" , "PS1_3") ;
205 i a r c ("TThink2_2" , "PS2") ; oarc ("TThink2_2" , "PS2_0") ;
206 oarc ("TThink2_2" , "PS2_1") ; oarc ("TThink2_2" , "PS2_3") ;
207 i a r c ("TThink2_3" , "PS3") ; oarc ("TThink2_3" , "PS3_0") ;
208 oarc ("TThink2_3" , "PS3_1") ; oarc ("TThink2_3" , "PS3_2") ;
209

210 i a r c ("TP0" , "PP_0") ; oarc ("TP0" , "PP_0p") ;
211 i a r c ("TP1" , "PP_1") ; oarc ("TP1" , "PP_1p") ;
212 i a r c ("TP2" , "PP_2") ; oarc ("TP2" , "PP_2p") ;
213 i a r c ("TP3" , "PP_3") ; oarc ("TP3" , "PP_3p") ;
214

215 i a r c ("T0" , "P_0") ; oarc ("T0" , "P_0p") ;
216 i a r c ("T1" , "P_1") ; oarc ("T1" , "P_1p") ;
217 i a r c ("T2" , "P_2") ; oarc ("T2" , "P_2p") ;
218 i a r c ("T3" , "P_3") ; oarc ("T3" , "P_3p") ;
219 oarc ("tcend" , "Cend") ;
220 }
221

137

222 int QlenP0 () {
223 return (mark ("PP_0")) ;
224 }
225 int QlenC0 () {
226 return (mark ("P_0")) ;
227 }
228 int UtilP0 () {
229 return (enabled ("TP0")) ;
230 }
231 int UtilC0 () {
232 return (enabled ("T0")) ;
233 }
234 int a s s e r t () {
235 }
236 void a c i n i t () {
237 p r n e t i n f o () ;
238 }
239 void ac reach () {
240 p r r g i n f o () ;
241 }
242 double holdingTime () {
243 if (mark ("Cend") == 0)
244 return (1 . 0) ;
245 else

246 return (0 . 0) ;
247 }
248 void a c f i n a l () {
249 pr cum expected ("time in non -absorbing markings" , holdingTime) ;
250 }

C.2 Python script to generate SRN code for larger networks

Also available here2.

1 de f create SRN (f ,N) :
2 f i l e = open ("exact_f%s_N%s_new_param_0421_script.c" % (f ,N) , ’w+’)
3 f i l e . wr i t e (’#include <stdio.h>\n#include "user.h"\n’)
4 f i l e . wr i t e (’#include <stdlib.h>\n#include <time.h>\n’)
5 f i l e . wr i t e ("#define PR12Val1 7.7448 \n")
6 f i l e . wr i t e ("#define PR12Val2 1.50895 \n")
7 f i l e . wr i t e ("#define PR3Val1 34.7047 \n")
8 f i l e . wr i t e ("#define PR3Val2 1.202207 \n")
9 f i l e . wr i t e ("#define TxVal1 1.41605 \n")

10 f i l e . wr i t e ("#define TxVal2 2.09217 \n")
11 f i l e . wr i t e ("#define PR3HypoVal1 2 \n")
12 f i l e . wr i t e ("#define PR3HypoVal2 267.9746 \n")
13 f i l e . wr i t e ("#define PR3HypoVal3 22.04979 \n")
14 f i l e . wr i t e ("#define PR3HypoVal4 0 \n")
15 f i l e . wr i t e ("#define QVal1 25.864 \n")
16 f i l e . wr i t e ("#define QVal2 1.56081 \n")
17 f i l e . wr i t e ("#define QueueRate 8.959 \n")
18 f i l e . wr i t e ("int f = %s; \n" % (f))
19 f i l e . wr i t e ("int n = %s; \n" % (N))
20 f i l e . wr i t e ("double timeVal; \n")
21

22 # Functions
23 f i l e . wr i t e ("int gPS0 () {\n")

2 https://bitbucket.org/hvs2/fabric-perf-model/src/master/srn_code_v0.6/generate_

srn.py

138

https://bitbucket.org/hvs2/fabric-perf-model/src/master/srn_code_v0.6/generate_srn.py
https://bitbucket.org/hvs2/fabric-perf-model/src/master/srn_code_v0.6/generate_srn.py

24 f i l e . wr i t e ("\tif ((mark (\" PP_0p \") >= 2*f)) return (1);\n") ;
25 f i l e . wr i t e ("\t\telse\n") ;
26 f i l e . wr i t e ("\treturn (0) ;}\n") ;
27

28 for a in range (1 ,N) :
29 f i l e . wr i t e ("int gPS%s () { \n" % (a))
30 f i l e . wr i t e ("\tif ((mark (\"PP_%sp\") >= (2*f-1)))" % (a))
31 f i l e . wr i t e ("\treturn (1);\n else\n return (0);\n }\n")
32

33 for a in range (0 ,N) :
34 f i l e . wr i t e ("int gM%s () { \n" % (a))
35 f i l e . wr i t e ("\tif ((mark (\"P_%sp\") >= 2*f))" % (a))
36 f i l e . wr i t e ("\treturn (1);\n else\n return (0);\n }\n")
37

38 f i l e . wr i t e (’int gCReply () { \n’)
39 f i l e . wr i t e (’\tif ((’)
40

41 for a in range (0 ,N) :
42 f i l e . wr i t e ("mark (\"PM%s\")" % (a))
43 if a != N´1:
44 f i l e . wr i t e ("+")
45 a+=1
46 f i l e . wr i t e (">= (3*f+1)))\n")
47 f i l e . wr i t e ("\treturn (1);\n else\n return (0);\n }\n")
48

49 f i l e . wr i t e ("int myhalt () {\n\tif (mark (\" Cend \") !=0)\n\t\treturn (0);\n\

telse\n\t\treturn (1);\n}\n")
50

51 #Options
52 f i l e . wr i t e (’void options () { \n’)
53 f i l e . wr i t e (’\tiopt(IOP_SIMULATION ,VAL_YES); \n’)
54 f i l e . wr i t e (’\tiopt(IOP_SIM_STD_REPORT ,VAL_YES); \n’)
55 f i l e . wr i t e (’\tiopt(IOP_SIM_SEED ,35983453) ; \n’)
56 f i l e . wr i t e (’\tiopt(IOP_SIM_RUNS , 5000); \n’)
57 f i l e . wr i t e (’\tfopt(FOP_SIM_ERROR , 0.1) ; \n’)
58 f i l e . wr i t e (’\tfopt(FOP_SIM_LENGTH , 20); \n’)
59 f i l e . wr i t e (’\tiopt(IOP_SIM_CUMULATIVE ,VAL_NO); \n’)
60 f i l e . wr i t e (’\tfopt(FOP_SIM_CONFIDENCE ,.9); \n’)
61 f i l e . wr i t e (’}\n’)
62

63 f i l e . wr i t e (’void net() {\n’)
64 for a in range (0 ,N) :
65 f i l e . wr i t e ("\tplace (\"PP_%s\");\n" % (a))
66 f i l e . wr i t e ("\tplace (\"PP_%sp\");\n" % (a))
67 f i l e . wr i t e ("\tplace (\"P_%s\");\n" % (a))
68 f i l e . wr i t e ("\tplace (\"P_%sp\");\n" % (a))
69 f i l e . wr i t e ("\tplace (\"M%s\");\n" % (a))
70 f i l e . wr i t e ("\tinit (\"M%s\",1);\n" % (a))
71 f i l e . wr i t e ("\tplace (\"PM%s\");\n" % (a))
72 f i l e . wr i t e ("\tplace (\"PS%s\");\n" % (a))
73 f i l e . wr i t e ("\tinit (\"PS%s\",1);\n" % (a))
74

75 for a in range (1 ,N) :
76 for b in range (0 ,N) :
77 if b != a :
78 f i l e . wr i t e ("\tplace (\"PPS%s_%s\");\n" % (a , b))
79 f i l e . wr i t e (’\n’)
80

81 for a in range (0 ,N) :
82 for b in range (0 ,N) :
83 if b != a :
84 f i l e . wr i t e ("\tplace (\"PS%s_%s\");\n" % (a , b))
85 f i l e . wr i t e (’\n’)
86

87 f i l e . wr i t e (’\tplace ("Cend");’)

139

88 f i l e . wr i t e (’\n’)
89

90 for a in range (1 ,N) :
91 f i l e . wr i t e ("\tplace (\"PPS%s\");\n" % (a))
92 f i l e . wr i t e ("\tplace (\"N0%s\");\n" % (a))
93

94 f i l e . wr i t e (’\tplace ("Pcl");\n ’)
95 f i l e . wr i t e (’\tinit ("Pcl",1);\n ’)
96 f i l e . wr i t e (’\tplace (" CLeader ");\n ’)
97 f i l e . wr i t e (’\tinit (" CLeader ",1);\n ’)
98

99 f i l e . wr i t e (’\timm("tcend "); guard("tcend",gCReply);’)
100 f i l e . wr i t e (’\tpriority (" tcend",1); probval ("tcend",1);\n’)
101

102 f i l e . wr i t e (’\tweibval ("TC0",PR12Val1 , PR12Val2);\n’)
103

104 for a in range (1 ,N) :
105 f i l e . wr i t e ("\tweibval (\"TN%s\",TxVal1 , TxVal2);\n" % (a))
106 f i l e . wr i t e ("\tweibval (\" TThink1_%s\",PR12Val1 , PR12Val2);\n" % (a))
107 f i l e . wr i t e (’\n’)
108

109 for a in range (1 ,N) :
110 for b in range (0 ,N) :
111 if b != a :
112 f i l e . wr i t e ("\tweibval (\" TPPS%s_%s\",TxVal1 , TxVal2);\n" % (a , b))
113 f i l e . wr i t e (’\n’)
114

115 for a in range (0 ,N) :
116 f i l e . wr i t e ("\thypoval (\" TThink2_%s\",PR3HypoVal1 , PR3HypoVal2 ,

PR3HypoVal3 , PR3HypoVal4);\n" % (a))
117 f i l e . wr i t e ("\tguard (\" TThink2_%s\",gPS%s);\n" % (a , a))
118 f i l e . wr i t e (’\n’)
119

120 for a in range (0 ,N) :
121 for b in range (0 ,N) :
122 if b != a :
123 f i l e . wr i t e ("\tweibval (\"TPS%s_%s\",TxVal1 ,TxVal2);\n" % (a , b))
124 f i l e . wr i t e (’\n’)
125

126 for a in range (0 ,N) :
127 f i l e . wr i t e ("\tweibval (\"TP%s\",QVal1 ,QVal2);\n" % (a))
128 f i l e . wr i t e ("\tweibval (\"T%s\",QVal1 ,QVal2);\n" % (a))
129 f i l e . wr i t e ("\timm (\"TM%s\");\n" % (a))
130 f i l e . wr i t e ("\tguard (\"TM%s\",gM%s);\n" % (a , a))
131 f i l e . wr i t e ("\tpriority (\"TM%s\",1);\n" % (a))
132 f i l e . wr i t e ("\tprobval (\"TM%s\",1);\n" % (a))
133 f i l e . wr i t e (’\thalting_condition(myhalt);\n’)
134 f i l e . wr i t e (’ /* ====== ARC ====== */\n’)
135

136 for a in range (0 ,N) :
137 f i l e . wr i t e ("\tiarc (\"TM%s\",\"M%s\");\n" % (a , a))
138 f i l e . wr i t e ("\toarc (\"TM%s\",\"PM%s\");\n" % (a , a))
139

140 for a in range (1 ,N) :
141 f i l e . wr i t e ("\toarc (\"TN%s\",\"PPS%s\");\n" % (a , a))
142 f i l e . wr i t e ("\toarc (\" TC0\",\"N0%s\");\n" % (a))
143 f i l e . wr i t e ("\tiarc (\"TN%s\",\"N0%s\");\n" % (a , a))
144

145 f i l e . wr i t e (’\tiarc ("TC0","CLeader ");\n’)
146

147 for a in range (1 ,N) :
148 for b in range (0 ,N) :
149 if b != a :
150 f i l e . wr i t e ("\tiarc (\" TPPS%s_%s\",\"PPS%s_%s\");\n" % (a , b , a , b))
151 f i l e . wr i t e (’\n’)

140

152

153 for a in range (0 ,N) :
154 for b in range (0 ,N) :
155 if b != a :
156 f i l e . wr i t e ("\tiarc (\" TPS%s_%s\",\"PS%s_%s\");\n" % (a , b , a , b))
157 f i l e . wr i t e (’\tiarc (" tcend","Pcl");\n’)
158

159 for a in range (1 ,N) :
160 f i l e . wr i t e ("\tiarc (\" TThink1_%s\",\"PPS%s\");\n" % (a , a))
161 f i l e . wr i t e (’\n’)
162

163 for a in range (0 ,N) :
164 f i l e . wr i t e ("\tiarc (\" TThink2_%s\",\"PS%s\");\n" % (a , a))
165 f i l e . wr i t e (’\n’)
166

167 for a in range (1 ,N) :
168 for b in range (0 ,N) :
169 if b != a :
170 f i l e . wr i t e ("\toarc (\" TPPS%s_%s\",\"PP_%s\");\n" % (a , b , b))
171 f i l e . wr i t e ("\toarc (\" TThink1_%s\",\"PPS%s_%s\");\n" % (a , a , b))
172 f i l e . wr i t e (’\n’)
173

174 for a in range (0 ,N) :
175 f i l e . wr i t e ("\tiarc (\"TP%s\",\"PP_%s\");\n" % (a , a))
176 f i l e . wr i t e ("\toarc (\"TP%s\",\"PP_%sp\");\n" % (a , a))
177 f i l e . wr i t e (’\n’)
178

179 for a in range (0 ,N) :
180 for b in range (0 ,N) :
181 if b != a :
182 f i l e . wr i t e ("\toarc (\" TThink2_%s\",\"PS%s_%s\");\n" % (a , a , b))
183 f i l e . wr i t e ("\toarc (\" TPS%s_%s\",\"P_%s\");\n" % (a , b , b))
184 f i l e . wr i t e (’\n’)
185

186 for a in range (0 ,N) :
187 f i l e . wr i t e ("\tiarc (\"T%s\",\"P_%s\");\n" % (a , a))
188 f i l e . wr i t e ("\toarc (\"T%s\",\"P_%sp\");\n" % (a , a))
189 f i l e . wr i t e (’\n’)
190

191 f i l e . wr i t e (’\toarc (" tcend","Cend");\n’)
192 f i l e . wr i t e (’ /* Inhibtor Arcs */ \n’)
193 f i l e . wr i t e (’}’)
194 f i l e . wr i t e (’\n’)
195

196 f i l e . wr i t e (’ /* GUARD Functions */ \n’)
197

198 f i l e . wr i t e (’int assert () {}\n’)
199 f i l e . wr i t e (’void ac_init () {\n\tpr_net_info ();\n}\n’)
200 f i l e . wr i t e (’void ac_reach () {\n\tpr_rg_info ();\n}\n’)
201 f i l e . wr i t e (’double holdingTime () {\n if(mark("Cend") == 0) \n return (1.0); \

n else \n return (0.0); } \n’)
202 f i l e . wr i t e (’void ac_final () {\n’)
203 f i l e . wr i t e (’\tpr_cum_expected ("time in non -absorbing markings", holdingTime)

; \n}\n’)
204

205 create SRN (1 ,4)

141

C.3 R code for Probability distribution fitting

R code and datasets are available here3.

1 library (f i t d i s t r p l u s)
2 source (’distributions.R’)
3 datase t <- read . table (’datasetsV06/tx_all.csv’)
4 datase t <- datase t $V1
5 summary (datase t)
6 sd (datase t)
7

8 #dataset fitting

9 f exp <- f i t d i s t (dataset , "exp")
10 fw <- f i t d i s t (dataset , "weibull" , method = "mle" , lower = c (0 , 0))
11 f g <- f i t d i s t (dataset , "gamma" , lower=c (0 , 0))
12 fE2 <- f i t d i s t (dataset , "erlang_2" , start=c (0 . 0 1))
13 fE3 <- f i t d i s t (dataset , "erlang_3" , start=c (0 . 0 1))
14 fHypo_2 <- f i t d i s t (dataset , "hypoexp_2" , start=c (0 . 0001 , 0 . 01)) #NOTE: the two

starting parameter values should be DIFFERENT

15 fHypo_3 <- f i t d i s t (dataset , "hypoexp_3" , start=c (0 . 0001 , 0 . 01 , 0 . 001)) #NOTE:

the three starting parameter values should be DIFFERENT

16 fPareto <- f i t d i s t (dataset , "pareto" , start=list (shape = 1 , scale = 500))
17 fLogN <- f i t d i s t (dataset , "lnorm")
18

19 par (mfrow = c (2 , 2))
20 plot . legend <- c ("Exponential" , "Weibull" , "Gamma" , "Hypoexp (2-stage)" , "

Hypoexp (3-stage)" , "LogNormal" , "Pareto")
21 denscomp (list (fexp , fw , fg , fHypo_ 2 , fHypo_ 3 , fLogN , fPareto) , l e g endtex t = plot .

legend)
22 qqcomp(list (fexp , fw , fg , fHypo_ 2 , fHypo_ 3 , fLogN , fPareto) , l e g endtex t = plot .

legend)
23 cdfcomp (list (fexp , fw , fg , fHypo_ 2 , fHypo_ 3 , fLogN , fPareto) , l e g endtex t = plot .

legend)
24 ppcomp(list (fexp , fw , fg , fHypo_ 2 , fHypo_ 3 , fLogN , fPareto) , l e g endtex t = plot .

legend)
25 quantile (fexp , probs = 0 . 95)
26 quantile (dataset , probs = 0 . 95)
27

28 g o f s t a t (list (fexp , fw , fg , fE2 , fE3 , fHypo_ 2 , fHypo_ 3 , fLogN , fPareto) , f i tnames
= c ("exp" , "weibull" , "gamma" , "Erlang2" , "Erlang3" , "Hypoexp_2" , "Hypoexp_3

" , "LogNormal" , "Pareto"))
29 ks . t e s t (dataset , "pexp" , f exp $ es t imate)
30 ks . t e s t (dataset , "pweibull" , fw$ es t imate [1] , fw$ es t imate [2])
31 ks . t e s t (dataset , "pgamma" , f g $ es t imate [1] , f g $ es t imate [2])
32 ks . t e s t (dataset , "perlang_2" , fE2$ es t imate [1])
33 ks . t e s t (dataset , "perlang_3" , fE3$ es t imate [1])
34 ks . t e s t (dataset , "phypoexp_2" , fHypo_2$ es t imate [1] , fHypo_2$ es t imate [2])
35 ks . t e s t (dataset , "phypoexp_3" , fHypo_3$ es t imate [1] , fHypo_3$ es t imate [2] , fHypo_3

$ es t imate [3])
36 ks . t e s t (dataset , "plnorm" , fLogN$ es t imate [1] , fLogN$ es t imate [2])
37 ks . t e s t (dataset , "ppareto" , fPareto $ es t imate [1] , fPareto $ es t imate [2])
38

39 #NOTE: Different packages use different distn. fn. for distributions like

Weibull , Gamma etc.

40 #Weibull distn fn for SPNP is different than that in R

41 #The following code converts the parameter values for SPNP

42 shape <- fw$ es t imate [1]
43 scale <- 1/ (fw$ es t imate [2] ˆ fw$ es t imate [1])

3 https://bitbucket.org/hvs2/fabric-perf-model/src/master/data_analysis/

142

https://bitbucket.org/hvs2/fabric-perf-model/src/master/data_analysis/

Appendix D

Model and analysis code for Hyperledger Fabric V1

D.1 Endorsing process

SRN code for the model in Figure 7.6, also available here1.

1 #include <s t d i o . h>
2 #include "user.h"

3

4 /* global variables */

5 double RATEENDOR = 0 . 3 0 8 ;
6

7 int guard end () ;
8 int PendingP0 () ;
9 int PendingP1 () ;

10 int PendingWait () ;
11

12 void opt ions () {
13 i op t (IOP PR RSET , VAL YES) ;
14 i op t (IOP PR RGRAPH, VAL YES) ;
15 i op t (IOP PR FULL MARK, VAL YES) ;
16 }
17

18 int guard end () {
19 if (mark ("P_wait") > 0) {
20 return 1 ;
21 } else {
22 return 0 ;
23 }
24 }
25

26 int PendingP0 () {
27 return (mark ("P_en0")) ;
28 }
29

1 https://bitbucket.org/hvs2/fabric-perf-model/src/master/srn_code_V1/srn_

endorsing.c

143

https://bitbucket.org/hvs2/fabric-perf-model/src/master/srn_code_V1/srn_endorsing.c
https://bitbucket.org/hvs2/fabric-perf-model/src/master/srn_code_V1/srn_endorsing.c

30 int PendingP1 () {
31 return (mark ("P_en1")) ;
32 }
33

34 int PendingWait () {
35 return (mark ("P_wait")) ;
36 }
37

38 void net () {
39 /* Places and Transitions */

40 p lace ("Pend") ;
41 p lace ("P_en0") ; i n i t ("P_en0" , 1) ;
42 p lace ("P_en1") ; i n i t ("P_en1" , 1) ;
43 p lace ("P_wait") ;
44

45 imm("I_wait") ;
46 guard ("I_wait" , guard end) ;
47 p r i o r i t y ("I_wait" , 1) ;
48 probval ("I_wait" , 1) ;
49

50 r a t e va l ("T_en1" ,RATEENDOR) ;
51 r a t e va l ("T_en0" ,RATEENDOR) ;
52

53 /* Arcs */

54 i a r c ("T_en0" , "P_en0") ;
55 i a r c ("T_en1" , "P_en1") ;
56 v i a r c ("I_wait" , "P_wait" , PendingWait) ;
57 v i a r c ("I_wait" , "P_en0" , PendingP0) ;
58 v i a r c ("I_wait" , "P_en1" , PendingP1) ;
59 oarc ("T_en0" , "P_wait") ;
60 oarc ("T_en1" , "P_wait") ;
61 oarc ("I_wait" , "Pend") ;
62 }
63

64 int a s s e r t () {
65

66 }
67

68 void a c i n i t () {
69 p r n e t i n f o () ;
70 }
71

72 void ac reach () {
73 p r r g i n f o () ;
74 }
75

76

77 void a c f i n a l () {
78 int loop ;
79 s o l v e (INFINITY) ;
80 pr mtta ("time to absorption") ;
81 }

D.2 Ordering Service

SRN code for the model in Figure 7.7, also available here2

2 https://bitbucket.org/hvs2/fabric-perf-model/src/master/srn_code_V1/srn_

ordering.c

144

https://bitbucket.org/hvs2/fabric-perf-model/src/master/srn_code_V1/srn_ordering.c
https://bitbucket.org/hvs2/fabric-perf-model/src/master/srn_code_V1/srn_ordering.c

1 #include <s t d i o . h>
2 #include "user.h"

3 #include <s t d l i b . h>
4 #include <time . h>
5

6 /* global variables */

7 #define BLOCK SIZE 120
8 #define TX ARRIVAL 500
9

10 #define QUEUE SIZE BLOCK SIZE∗2
11 #define TIMEOUT 2
12 #define ERLANG STAGES 5
13 #define ERL STAGE RATE 2.5 // ERLANG_STAGES/TIMEOUT

14

15 void opt ions () {
16 i op t (IOP SSMETHOD, VALPOWER) ;
17 i op t (IOP SIMULATION,VAL NO) ;
18 }
19

20 double holdingTime Erlang () {
21 if (mark ("postfire") < ERLANG STAGES) {
22 return (1 . 0) ;
23 } else

24 return (0 . 0) ;
25 }
26

27 double holdingTime1 () {
28 if (mark ("end_timeout") == 0) {
29 return (1 . 0) ;
30 } else

31 return (0 . 0) ;
32 }
33

34 double holdingTime2 () {
35 if (mark ("end_size") == 0) {
36 return (1 . 0) ;
37 } else

38 return (0 . 0) ;
39 }
40

41 int gua rd ba t ch s i z e () {
42 if (mark ("end_timeout") == 1 | | mark("end_size") == 1) {
43 return 0 ;
44 } else {
45 return 1 ;
46 }
47 }
48

49 int guard t imeout () {
50 if (mark ("postfire") == ERLANG STAGES && mark("end_timeout") == 0 && mark("

end_size") == 0) {
51 return 1 ;
52 } else {
53 return 0 ;
54 }
55 }
56

57 int t im e ou t t r i g g e r f n () {
58 if (mark ("ordering_service") > 0) {
59 return 1 ;
60 } else {
61 return 0 ;
62 }
63 }
64

145

65 void net () {
66 /* Main NET */

67 r a t e va l ("tx_arrival" , TX ARRIVAL) ;
68 mharc ("tx_arrival" , "end_timeout" , 1) ;
69 mharc ("tx_arrival" , "end_size" , 1) ;
70

71 p lace ("ordering_service") ;
72 /* Timeout case */

73 imm("check_timeout") ;
74 guard ("check_timeout" , guard t imeout) ;
75 p r i o r i t y ("check_timeout" , 1) ;
76 p lace ("end_timeout") ;
77 oarc ("tx_arrival" , "ordering_service") ;
78 i a r c ("check_timeout" , "ordering_service") ;
79 oarc ("check_timeout" , "end_timeout") ;
80 /* Size case */

81 imm("batch_size") ;
82 guard ("batch_size" , gua rd ba t ch s i z e) ;
83 p r i o r i t y ("batch_size" , 1) ;
84 p lace ("end_size") ;
85 miarc ("batch_size" , "ordering_service" , BLOCK SIZE) ;
86 oarc ("batch_size" , "end_size") ;
87

88 /* Net for Deterministic timeout */

89 p lace ("TO_start") ;
90 i n i t ("TO_start" , 1) ;
91 imm("timeout_trigger") ;
92 p r i o r i t y ("timeout_trigger" , 1) ;
93 guard ("timeout_trigger" , t im e ou t t r i g g e r f n) ;
94

95 p lace ("prefire") ;
96 p lace ("postfire") ;
97 r a t e va l ("timeout_stage" , ERL STAGE RATE) ;
98 i a r c ("timeout_trigger" , "TO_start") ;
99 moarc ("timeout_trigger" , "prefire" , ERLANG STAGES) ;

100 i a r c ("timeout_stage" , "prefire") ;
101 oarc ("timeout_stage" , "postfire") ;
102 mharc ("timeout_trigger" , "prefire" , 1) ;
103 mharc ("timeout_trigger" , "postfire" , 1) ;
104 }
105

106 int a s s e r t () {
107 }
108

109 void a c i n i t () {
110 p r n e t i n f o () ;
111 }
112

113 void ac reach () {
114 p r r g i n f o () ;
115 }
116

117 double opt ion t imeout () {
118 return mark("end_timeout") ;
119 }
120

121 double op t i o n s i z e () {
122 return mark("end_size") ;
123 }
124

125 void a c f i n a l () {
126 s o l v e (INFINITY) ;
127 pr expected ("Prob. of completing timeout" , opt ion t imeout) ;
128 pr expected ("Prob. of completing Rateval" , o p t i o n s i z e) ;
129 }

146

R code for generating the plot in Figure 7.8, also available here3

1 library ("plotly")
2 library ("reshape2")
3 orde r ing <- read . table (’datasets/ordering.csv’ , header = TRUE, sep = ’,’)
4 orde r ing _ 2 .0 <- subset (order ing , t imeout==2)
5 orde r ing _ 2 .0 <- subset (o rde r ing _ 2 . 0 , b lock _ s i z e != 20)
6 orde r ing _ 2 .0 _melt <- melt (o rde r ing _ 2 . 0 , id . vars = c (’block_size’ , ’arrival_rate’

) , measure . vars = ’prob_timeout ’)
7 names (o rde r ing _ 2 .0 _melt) [4] <- "prob_timeout"

8

9 xax <- list (
10 title = "Block Size"

11)
12 yax <- list (
13 title = "Arrival Rate (\\ lambda_E)"

14)
15

16 plot_ l y (o rde r ing _ 2 .0 _melt , x = ~block _ s i z e , y = ~ a r r i v a l _ rate , z = ~prob_ timeout
,

17 type = "contour" , width = 400 , he ight = 300 , c o l o r s c a l e="Blues") %>%
18 layout (xax i s = xax , yax i s = yax , title="Block timeout = 2.0 sec.") %>%
19 co l o rba r (title = "Pr.(timeout)")

D.3 Committing peer

SRN code for the model in Figure 7.9, also available here4.

1 #include <s t d i o . h>
2 #include "user.h"

3 #include <s t d l i b . h>
4 #include <time . h>
5

6 /* global variables */

7 #define CORES 4
8 #define RATE BLOCKARR 1.0
9 #define RATE VSCC 396.197

10 #define RATEMVCC 390.777 // Size = 40

11 //#define RATE_MVCC 196.08 // Size = 80

12 //#define RATE_MVCC 138.89 // Size = 120

13

14 #define BLOCK SIZE 40
15 #define QUEUE SIZE BLOCK SIZE∗2
16 #define RATE LWRITE 4.8123 // Size = 40

17 //#define RATE_LWRITE 4.801 // Size = 80

18 //#define RATE_LWRITE 5.308 // Size = 120

19

20 void opt ions () {
21 //iopt(IOP_SSMETHOD , VAL_POWER);

22 i op t (IOP SIMULATION,VAL NO) ;
23 }
24

25 double r a t e v s c c () {
26 if (mark ("vscc_check") <= CORES) {
27 return (RATE VSCC∗mark("vscc_check")) ;

3 https://bitbucket.org/hvs2/fabric-perf-model/src/master/data_analysis/ordering_

ContourPlot.R

4 https://bitbucket.org/hvs2/fabric-perf-model/src/master/srn_code_V1/srn_

committer.c

147

https://bitbucket.org/hvs2/fabric-perf-model/src/master/data_analysis/ordering_ContourPlot.R
https://bitbucket.org/hvs2/fabric-perf-model/src/master/data_analysis/ordering_ContourPlot.R
https://bitbucket.org/hvs2/fabric-perf-model/src/master/srn_code_V1/srn_committer.c
https://bitbucket.org/hvs2/fabric-perf-model/src/master/srn_code_V1/srn_committer.c

28 } else {
29 return (RATE VSCC∗CORES) ;
30 }
31 }
32

33 double tpu t a r r () {
34 return (r a t e ("block_arrival")) ;
35 }
36

37 double u t i l a r r () {
38 return (enabled ("block_arrival")) ;
39 }
40

41 double tput v s c c () {
42 return (r a t e ("vscc")) ;
43 }
44

45 double u t i l v s c c () {
46 return (enabled ("vscc")) ;
47 }
48

49 double q l en v s c c () {
50 return mark("vscc_check") ;
51 }
52

53 double tput mvcc () {
54 return (r a t e ("mvcc")) ;
55 }
56

57 double ut i l mvcc () {
58 return (enabled ("mvcc")) ;
59 }
60

61 double qlen mvcc () {
62 return mark("mvcc_check") ;
63 }
64

65 double t p u t lw r i t e () {
66 return (r a t e ("lwrite")) ;
67 }
68

69 double u t i l l w r i t e () {
70 return (enabled ("lwrite")) ;
71 }
72

73 double q l e n lw r i t e () {
74 return mark("ledger_write") ;
75 }
76

77 double i n com ing queue fu l l () {
78 if (mark ("vscc_check") == QUEUE SIZE) {
79 return 1 ;
80 } else {
81 return 0 ;
82 }
83 }
84

85 void net () {
86 /* Places and Transitions */

87 r a t e va l ("block_arrival" , RATE BLOCKARR) ;
88 p lace ("vscc_check") ;
89 ra t e fun ("vscc" , r a t e v s c c) ;
90 p lace ("vscc_check_done") ;
91 imm("vscc_collect") ;
92 p r i o r i t y ("vscc_collect" , 1) ;

148

93

94 p lace ("mvcc_check") ;
95 r a t e va l ("mvcc" , RATEMVCC) ;
96 p lace ("ledger_write") ;
97 r a t e va l ("lwrite" , RATE LWRITE) ;
98

99 /* Arcs */

100 mharc ("block_arrival" , "vscc_check" , QUEUE SIZE) ;
101 moarc ("block_arrival" , "vscc_check" , BLOCK SIZE) ;
102 i a r c ("vscc" , "vscc_check") ;
103 oarc ("vscc" , "vscc_check_done") ;
104 mharc ("vscc" , "vscc_check_done" , QUEUE SIZE) ;
105

106 miarc ("vscc_collect" , "vscc_check_done" , BLOCK SIZE) ;
107 oarc ("vscc_collect" , "mvcc_check") ;
108 mharc ("vscc_collect" , "mvcc_check" , 2) ;
109

110 i a r c ("mvcc" , "mvcc_check") ;
111 oarc ("mvcc" , "ledger_write") ;
112 mharc ("mvcc" , "ledger_write" , 2) ;
113

114 i a r c ("lwrite" , "ledger_write") ;
115 }
116

117 /* metrics */

118

119 int a s s e r t () {
120

121 }
122

123 void a c i n i t () {
124 /* Information on the net structure */

125 p r n e t i n f o () ;
126 }
127

128 void ac reach () {
129 /* Information on the reachability graph */

130 p r r g i n f o () ;
131 }
132

133 void a c f i n a l () {
134 s o l v e (INFINITY) ;
135 pr expected ("Throughput at Block Arri" , t pu t a r r) ;
136 pr expected ("Utilizati. at Block Arri" , u t i l a r r) ;
137 pr expected ("Incoming Queue Full " , i n com ing queue fu l l) ;
138 pr expected ("Throughput at VSCC check" , t pu t v s c c) ;
139 pr expected ("Utilizati. at VSCC check" , u t i l v s c c) ;
140 pr expected ("Queue Len. at VSCC check" , q l e n v s c c) ;
141 pr expected ("Throughput at RW check" , tput mvcc) ;
142 pr expected ("Utilizati. at RW check" , u t i l mvcc) ;
143 pr expected ("Queue Len. at RW check" , qlen mvcc) ;
144 pr expected ("Throughput at Ledger " , t p u t lw r i t e) ;
145 pr expected ("Utilizati. at Ledger " , u t i l l w r i t e) ;
146 pr expected ("Queue Len. at Ledger " , q l e n lw r i t e) ;
147 }

149

Appendix E

Mathematical expression for Probability
distributions

In this section, we provide the probability density functions (fXptq) for various prob-

ability distributions used in our thesis. Probability distributions are used in two

tools, R for data analysis, and SPNP for our models. The functions described below

are common to both the tools, unless otherwise stated.

• Exponential distribution

fXptq “ λe´λt, t ě 0

• Weibull distribution

R: fXptq “
a

b

ˆ

t

b

˙a´1

e´p
t
bq
a

, t ě 0, a ą 0, b ą 0

SPNP: fXptq “ λαtα´1e´λt
α

, t ě 0, α ą 0, λ ą 0

Thus, to convert parameter value from R to SPNP, α “ a and λ “ 1
ba

• Gamma distribution

fXptq “
1

Γ pαq
λαtα´1e´λt, α ą 0, λ ą 0, t ě 0

150

• Erlang distribution

fXptq “
λktk´1e´λt

pk ´ 1q!
, λ ą 0, t ě 0

where k is the number of stages.

• Hypoexponential distribution (2-stage)

fXptq “
λ1λ2

pλ2 ´ λ1q

`

e´λ1t ´ e´λ2t
˘

, λ1 ‰ λ2, λ1 ą 0, λ2 ą 0, t ě 0

• LogNormal distribution

fXptq “
1

t
?

2πσ2
e´

pln t´µq2

2σ2 , σ ą 0, t ě 0

• Pareto distribution

fXptq “
αθα

pt` θqpα`1q
, α ą 0, θ ą 0, t ě 0

151

Bibliography

[1] D. Yaga, P. Mell, N. Roby, and K. Scarfone, “Blockchain Technol-
ogy Overview (Draft NISTIR 82022),” https://csrc.nist.gov/CSRC/media/
Publications/nistir/8202/draft/documents/nistir8202-draft.pdf.

[2] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” https://
bitcoin.org/bitcoin.pdf.

[3] D. Tapscott and A. Tapscott, Blockchain Revolution : How the Technology
behind Bitcoin is Changing Money, Business, and the World. New York:
Portfolio Penguin, 2016.

[4] J. Mendling, I. Weber, W. V. D. Aalst, J. V. Brocke, C. Cabanillas, F. Daniel,
S. Debois, C. D. Ciccio, M. Dumas, S. Dustdar, A. Gal, L. Garćıa-Bañuelos,
G. Governatori, R. Hull, M. L. Rosa, H. Leopold, F. Leymann, J. Recker,
M. Reichert, H. A. Reijers, S. Rinderle-Ma, A. Solti, M. Rosemann, S. Schulte,
M. P. Singh, T. Slaats, M. Staples, B. Weber, M. Weidlich, M. Weske, X. Xu,
and L. Zhu, “Blockchains for Business Process Management - Challenges and
Opportunities,” ACM Trans. Manage. Inf. Syst., vol. 9, no. 1, pp. 4:1–4:16,
Feb. 2018.

[5] T. Swanson, “Consensus-as-a-Service: a brief report on the emergence
of permissioned, distributed ledger systems,” http://www.ofnumbers.com/
wp-content/uploads/2015/04/Permissioned-distributed-ledgers.pdf, 2015.

[6] N. Szabo, “Smart contracts: Building blocks for digital markets,”
1996. [Online]. Available: http://www.fon.hum.uva.nl/rob/Courses/
InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.
vwh.net/smart contracts 2.html

[7] Hyperledger, “Hyperledger Architecture, Volume 2 - Smart Con-
tracts,” https://www.hyperledger.org/wp-content/uploads/2018/04/
Hyperledger Arch WG Paper 2 SmartContracts.pdf.

152

https://csrc.nist.gov/CSRC/media/Publications/nistir/8202/draft/documents/nistir8202-draft.pdf
https://csrc.nist.gov/CSRC/media/Publications/nistir/8202/draft/documents/nistir8202-draft.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://www.ofnumbers.com/wp-content/uploads/2015/04/Permissioned-distributed-ledgers.pdf
http://www.ofnumbers.com/wp-content/uploads/2015/04/Permissioned-distributed-ledgers.pdf
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://www.hyperledger.org/wp-content/uploads/2018/04/Hyperledger_Arch_WG_Paper_2_SmartContracts.pdf
https://www.hyperledger.org/wp-content/uploads/2018/04/Hyperledger_Arch_WG_Paper_2_SmartContracts.pdf

[8] “Ethereum - White Paper (wiki),” https://github.com/ethereum/wiki/wiki/
White-Paper, accessed: 2017-01-15.

[9] C. Cachin and M. Vukolić, “Blockchain Consensus Protocols in the Wild,” in
International Symposium on Distributed Computing (DISC), A. W. Richa, Ed.,
2017, pp. 1:1–1:16.

[10] IBM, “The difference between public and private
blockchain,” https://www.ibm.com/blogs/blockchain/2017/05/
the-difference-between-public-and-private-blockchain/.

[11] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance and Proactive
Recovery,” ACM Trans. Comput. Syst., vol. 20, no. 4, pp. 398–461, Nov. 2002.

[12] M. Vukolić, “Rethinking Permissioned Blockchains,” in ACM Workshop on
Blockchain, Cryptocurrencies and Contracts (BCC), 2017, pp. 3–7.

[13] “Hyperledger Business Blockchain Technologies,” https://www.hyperledger.
org/projects.

[14] Hyperledger, “Hyperledger Architecture, Volume 1 - Consen-
sus,” https://www.hyperledger.org/wp-content/uploads/2017/08/
Hyperledger Arch WG Paper 1 Consensus.pdf.

[15] “Hyperledger Fabric,” https://www.hyperledger.org/projects/fabric.

[16] IBM, “IBM Blockchain Platform,” https://www.ibm.com/blogs/blockchain/
2017/08/your-guide-to-the-ibm-blockchain-platform-announcement/.

[17] ——, “One nations move to increase food safety with
blockchain,” https://www.ibm.com/blogs/blockchain/2018/02/
one-nations-move-to-increase-food-safety-with-blockchain/, accessed: 2018-
05-14.

[18] ——, “New collaboration on trade finance platform built on
blockchain,” https://www.ibm.com/blogs/blockchain/2017/10/
new-collaboration-on-trade-finance-platform-built-on-blockchain/, accessed:
2018-05-14.

[19] ——, “Digitizing Global Trade with Maersk and IBM,” https://www.
ibm.com/blogs/blockchain/2018/01/digitizing-global-trade-maersk-ibm/, ac-
cessed: 2018-05-14.

153

 https://github.com/ethereum/wiki/wiki/White-Paper
 https://github.com/ethereum/wiki/wiki/White-Paper
https://www.ibm.com/blogs/blockchain/2017/05/the-difference-between-public-and-private-blockchain/
https://www.ibm.com/blogs/blockchain/2017/05/the-difference-between-public-and-private-blockchain/
https://www.hyperledger.org/projects
https://www.hyperledger.org/projects
https://www.hyperledger.org/wp-content/uploads/2017/08/Hyperledger_Arch_WG_Paper_1_Consensus.pdf
https://www.hyperledger.org/wp-content/uploads/2017/08/Hyperledger_Arch_WG_Paper_1_Consensus.pdf
https://www.hyperledger.org/projects/fabric
https://www.ibm.com/blogs/blockchain/2017/08/your-guide-to-the-ibm-blockchain-platform-announcement/
https://www.ibm.com/blogs/blockchain/2017/08/your-guide-to-the-ibm-blockchain-platform-announcement/
https://www.ibm.com/blogs/blockchain/2018/02/one-nations-move-to-increase-food-safety-with-blockchain/
https://www.ibm.com/blogs/blockchain/2018/02/one-nations-move-to-increase-food-safety-with-blockchain/
https://www.ibm.com/blogs/blockchain/2017/10/new-collaboration-on-trade-finance-platform-built-on-blockchain/
https://www.ibm.com/blogs/blockchain/2017/10/new-collaboration-on-trade-finance-platform-built-on-blockchain/
https://www.ibm.com/blogs/blockchain/2018/01/digitizing-global-trade-maersk-ibm/
https://www.ibm.com/blogs/blockchain/2018/01/digitizing-global-trade-maersk-ibm/

[20] “Mining - Bitcoin Wiki,” https://en.bitcoin.it/wiki/Mining.

[21] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A. Miller,
P. Saxena, E. Shi, E. Gün Sirer, D. Song, and R. Wattenhofer, On Scaling
Decentralized Blockchains. Springer Berlin Heidelberg, 2016, pp. 106–125.

[22] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro,
D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Muralidharan,
C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti,
C. Stathakopoulou, M. Vukolić, S. W. Cocco, and J. Yellick, “Hyperledger
Fabric: A Distributed Operating System for Permissioned Blockchains,” in
EuroSys, ser. EuroSys, 2018, pp. 30:1–30:15.

[23] “Hyperledger Caliper,” https://www.hyperledger.org/projects/caliper.

[24] J. K. Muppala, G. Ciardo, and K. S. Trivedi, “Stochastic Reward Nets for
Reliability Prediction,” in Communications in Reliability, Maintainability and
Serviceability, 1994, pp. 9–20.

[25] R. Mitchell and I. R. Chen, “Effect of Intrusion Detection and Response on Re-
liability of Cyber Physical Systems,” IEEE Transactions on Reliability, vol. 62,
no. 1, pp. 199–210, March 2013.

[26] D. Bruneo, “A Stochastic Model to Investigate Data Center Performance and
QoS in IaaS cloud computing systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 25, no. 3, pp. 560–569, 2014.

[27] D. S. Kim, J. B. Hong, T. A. Nguyen, F. Machida, J. S. Park, and K. S. Trivedi,
“Availability Modeling and Analysis of a Virtualized System using Stochastic
Reward Nets,” in IEEE CIT, Dec 2016, pp. 210–218.

[28] K. Trivedi and A. Bobbio, Reliability and Availability Engineering: Modeling,
Analysis, and Applications. Cambridge University Press, 2017.

[29] H. Sukhwani, J. M. Mart́ınez, X. Chang, K. S. Trivedi, and A. Rindos, “Per-
formance Modeling of PBFT Consensus Process for Permissioned Blockchain
Network (Hyperledger Fabric),” in IEEE Symposium on Reliable Distributed
Systems (SRDS), Sept. 2017, pp. 253–255, c©2017 IEEE.

[30] “Hyperledger Fabric v1.0 announcement,” https:
//www.hyperledger.org/announcements/2017/07/11/
hyperledger-announces-production-ready-hyperledger-fabric-1-0, accessed:
2017-12-11.

154

https://en.bitcoin.it/wiki/Mining
https://www.hyperledger.org/projects/caliper
https://www.hyperledger.org/announcements/2017/07/11/hyperledger-announces-production-ready-hyperledger-fabric-1-0
https://www.hyperledger.org/announcements/2017/07/11/hyperledger-announces-production-ready-hyperledger-fabric-1-0
https://www.hyperledger.org/announcements/2017/07/11/hyperledger-announces-production-ready-hyperledger-fabric-1-0

[31] Docker, “What is a Container,” https://www.docker.com/what-container.

[32] J. R. Douceur, “The Sybil Attack,” in Revised Papers from the First Interna-
tional Workshop on Peer-to-Peer Systems, ser. IPTPS ’01. Springer-Verlag,
2002, pp. 251–260.

[33] “Proof of work - Bitcoin Wiki,” https://en.bitcoin.it/wiki/Proof of work.

[34] J. Katz and Y. Lindell, Introduction to modern cryptography. Boca Raton:
Chapman & Hall/CRC, 2008.

[35] “Hyperledger Fabric v0.6,” http://web.archive.org/web/20160924231627/http:
//hyperledger-fabric.readthedocs.io/en/latest/protocol-spec.

[36] “Protocol buffers - Google,” https://developers.google.com/protocol-buffers/
docs/overview, accessed: 2017-01-15.

[37] R. C. Merkle, “A digital signature based on a conventional encryption func-
tion,” in Advances in Cryptology, C. Pomerance, Ed. Springer Berlin Heidel-
berg, 1988, pp. 369–378.

[38] “gRPC guide,” http://www.grpc.io/docs/guides/index.html, accessed: 2017-
01-15.

[39] F. B. Schneider, “Implementing Fault-tolerant Services using the State Ma-
chine Approach: A Tutorial,” ACM Comput. Surv., vol. 22, no. 4, pp. 299–319,
Dec. 1990.

[40] C. H. Papadimitriou and P. C. Kanellakis, “On Concurrency Control by Mul-
tiple Versions,” ACM Trans. Database Syst., vol. 9, no. 1, pp. 89–99, Mar.
1984.

[41] P. Thakkar, S. Nathan, and B. Viswanathan, “Performance Benchmarking and
Optimizing Hyperledger Fabric Blockchain Platform,” in IEEE MASCOTS,
2018.

[42] J. Kreps, N. Narkhede, and J. Rao, “Kafka: a Distributed Messaging System
for Log Processing,” in Proceedings of the NetDB, 2011, pp. 1–7.

[43] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free Coor-
dination for Internet-scale Systems,” in USENIX Annual Technical Conference,
2010.

155

https://www.docker.com/what-container
https://en.bitcoin.it/wiki/Proof_of_work
http://web.archive.org/web/20160924231627/http://hyperledger-fabric.readthedocs.io/en/latest/protocol-spec
http://web.archive.org/web/20160924231627/http://hyperledger-fabric.readthedocs.io/en/latest/protocol-spec
https://developers.google.com/protocol-buffers/docs/overview
https://developers.google.com/protocol-buffers/docs/overview
http://www.grpc.io/docs/guides/index.html

[44] K. Christidis, “A Kafka-based Ordering Service for Fab-
ric,” https://docs.google.com/document/d/1vNMaM7XhOlu9tB
10dKnlrhy5d7b1u8lSY8a-kVjCO4, accessed: 2017-12-11.

[45] Hyperledger Blockchain Performance Metrics White Paper, v1.0 ed. The
Linux Foundation, Oct. 2018. [Online]. Available: https://www.hyperledger.
org/resources/publications/blockchain-performance-metrics

[46] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, “Bitcoin-NG: A Scalable
Blockchain Protocol,” in Usenix Conference on Networked Systems Design and
Implementation, ser. NSDI’16. Berkeley, CA, USA: USENIX Association,
2016, pp. 45–59.

[47] “How should i handle blockchain forks in my (ethereum)
dapp?” https://ethereum.stackexchange.com/questions/183/
how-should-i-handle-blockchain-forks-in-my-dapp/.

[48] H. Sukhwani, “Plots for PSWG’s metrics documents,” https://github.com/
tallharish/PerfMetricsPSWG.

[49] SWIFT, “gpi real-time Nostro Proof of Concept,” https://www.swift.com/
resource/gpi-real-time-nostro-proof-concept, 2018.

[50] A. B. Bondi, “Characteristics of scalability and their impact on performance,”
in International Workshop on Software and Performance, ser. WOSP ’00, 2000,
pp. 195–203.

[51] M. D. Hill, “What is scalability?” SIGARCH Comput. Archit. News, vol. 18,
no. 4, pp. 18–21, Dec. 1990.

[52] L. Duboc, D. S. Rosenblum, and T. Wicks, “A framework for modelling and
analysis of software systems scalability,” in Proceedings of the 28th Interna-
tional Conference on Software Engineering, ser. ICSE ’06, 2006, pp. 949–952.

[53] A. Avizienis, J. . Laprie, B. Randell, and C. Landwehr, “Basic Concepts and
Taxonomy of Dependable and Secure Computing,” IEEE Transactions on De-
pendable and Secure Computing, vol. 1, no. 1, pp. 11–33, Jan 2004.

[54] C. Decker and R. Wattenhofer, “Information propagation in the Bitcoin net-
work,” in IEEE P2P 2013, 2013, pp. 1–10.

156

https://docs.google.com/document/d/1vNMaM7XhOlu9tB_10dKnlrhy5d7b1u8lSY8a-kVjCO4
https://docs.google.com/document/d/1vNMaM7XhOlu9tB_10dKnlrhy5d7b1u8lSY8a-kVjCO4
https://www.hyperledger.org/resources/publications/blockchain-performance-metrics
https://www.hyperledger.org/resources/publications/blockchain-performance-metrics
https://ethereum.stackexchange.com/questions/183/how-should-i-handle-blockchain-forks-in-my-dapp/
https://ethereum.stackexchange.com/questions/183/how-should-i-handle-blockchain-forks-in-my-dapp/
https://github.com/tallharish/PerfMetricsPSWG
https://github.com/tallharish/PerfMetricsPSWG
https://www.swift.com/resource/gpi-real-time-nostro-proof-concept
https://www.swift.com/resource/gpi-real-time-nostro-proof-concept

[55] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and S. Cap-
kun, “On the Security and Performance of Proof of Work Blockchains,” in
ACM SIGSAC CCS, 2016, pp. 3–16.

[56] J. Kuhlenkamp, M. Klems, and O. Röss, “Benchmarking Scalability and Elas-
ticity of Distributed Database Systems,” VLDB, vol. 7, no. 12, pp. 1219–1230,
Aug. 2014.

[57] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L. Tan, “BLOCK-
BENCH: A Framework for Analyzing Private Blockchains,” in ACM Interna-
tional Conference on Management of Data, ser. SIGMOD, 2017, pp. 1085–1100.

[58] A. Baliga, N. Solanki, S. Verekar, A. Pednekar, P. Kamat, and S. Chatter-
jee, “Performance Characterization of Hyperledger Fabric,” in Crypto Valley
Conference on Blockchain Technology (CVCBT), 2018.

[59] “IBM Watson IoT Track and Trace contract - GitHub,” https:
//github.com/ibm-watson-iot/blockchain-samples/tree/master/contracts/
industry/trackandtrace, accessed: 2018-08-17.

[60] “IBM Watson IoT Contract Platform - GitHub,” https://github.com/
ibm-watson-iot/blockchain-samples/tree/master/contracts/platform/
iotcontractplatform, accessed: 2017-04-15.

[61] NIST, “Kolmogorov-Smirnov Goodness-of-fit test,” http://www.itl.nist.gov/
div898/handbook/eda/section3/eda35g.htm, accessed: 2017-04-15.

[62] H. Akaike, “A New Look at the Statistical Model Identification,” IEEE Trans.
on Auto. Control, vol. 19, no. 6, pp. 716–723, Dec 1974.

[63] T. Hothorn and B. S. Everitt, A Handbook of Statistical Analyses using R.
Boca Raton, FL: CRC Press/Taylor & Francis Group, 2014.

[64] S. Pongnumkul, C. Siripanpornchana, and S. Thajchayapong, “Performance
Analysis of Private Blockchain Platforms in Varying Workloads,” in IEEE In-
ternational Conference on Computer Communication and Networks (ICCCN),
July 2017, pp. 1–6.

[65] G. Ciardo, J. K. Muppala, and K. S. Trivedi, “SPNP: Stochastic Petri Net
Package,” in Petri Nets and Performance Models, 1989, pp. 142–151.

[66] “AWS Inter-Region EC2 Latency,” https://www.concurrencylabs.com/blog/
choose-your-aws-region-wisely/, accessed: 2017-04-23.

157

https://github.com/ibm-watson-iot/blockchain-samples/tree/master/contracts/industry/trackandtrace
https://github.com/ibm-watson-iot/blockchain-samples/tree/master/contracts/industry/trackandtrace
https://github.com/ibm-watson-iot/blockchain-samples/tree/master/contracts/industry/trackandtrace
https://github.com/ibm-watson-iot/blockchain-samples/tree/master/contracts/platform/iotcontractplatform
https://github.com/ibm-watson-iot/blockchain-samples/tree/master/contracts/platform/iotcontractplatform
https://github.com/ibm-watson-iot/blockchain-samples/tree/master/contracts/platform/iotcontractplatform
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm
https://www.concurrencylabs.com/blog/choose-your-aws-region-wisely/
https://www.concurrencylabs.com/blog/choose-your-aws-region-wisely/

[67] “Latency between AWS global regions,” https://web.archive.
org/web/20161107091957/http://zhiguang.me/2016/05/10/
latency-between-aws-global-regions/, accessed: 2017-04-10.

[68] “Verizon Enterprise Solutions Latency Statistics,” http://www.
verizonenterprise.com/about/network/latency/#pip.

[69] A. Abdou, A. Matrawy, and P. C. van Oorschot, “Accurate one-way delay es-
timation with reduced client trustworthiness,” IEEE Communications Letters,
vol. 19, no. 5, pp. 735–738, May 2015.

[70] R. Halalai, T. A. Henzinger, and V. Singh, “Quantitative Evaluation of BFT
Protocols,” in International Conference on Quantitative Evaluation of Systems
(QEST), Sept 2011, pp. 255–264.

[71] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti, “Making Byzan-
tine Fault Tolerant Systems tolerate Byzantine Faults,” in USENIX Sympo-
sium on Networked Systems Design and Implementation, ser. NSDI’09, 2009,
pp. 153–168.

[72] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva: Specula-
tive byzantine fault tolerance,” in ACM SIGOPS SOSP, 2007, pp. 45–58.

[73] A. Bessani, J. Sousa, and E. E. P. Alchieri, “State Machine Replication for the
Masses with BFT-SMaRt,” in IEEE/IFIP DSN, 2014, pp. 355–362.

[74] D. Ongaro and J. Ousterhout, “In Search of an Understandable Consensus
Algorithm,” in USENIX. USENIX Association, 2014, pp. 305–319.

[75] H. Sukhwani, N. Wang, K. S. Trivedi, and A. Rindos, “Performance Modeling
of Hyperledger Fabric (Permissioned Blockchain Network),” in IEEE Inter-
national Symposium on Network Computing and Applications (NCA), 2018,
c©2018 IEEE.

[76] “Does Hyperledger Fabric need Docker?” https://stackoverflow.com/
questions/48070380/does-hyperledger-fabric-need-docker.

[77] J. P. Buzen and P. J. Denning, “Measuring and Calculating Queue Length
Distributions,” IEEE Computer, vol. 13, no. 4, pp. 33–44, April 1980.

[78] J. Sousa, A. Bessani, and M. Vukolic, “A Byzantine Fault-Tolerant Ordering
Service for the Hyperledger Fabric Blockchain Platform,” in IEEE/IFIP DSN,
2018, pp. 51–58.

158

https://web.archive.org/web/20161107091957/http://zhiguang.me/2016/05/10/latency-between-aws-global-regions/
https://web.archive.org/web/20161107091957/http://zhiguang.me/2016/05/10/latency-between-aws-global-regions/
https://web.archive.org/web/20161107091957/http://zhiguang.me/2016/05/10/latency-between-aws-global-regions/
http://www.verizonenterprise.com/about/network/latency/#pip
http://www.verizonenterprise.com/about/network/latency/#pip
https://stackoverflow.com/questions/48070380/does-hyperledger-fabric-need-docker
https://stackoverflow.com/questions/48070380/does-hyperledger-fabric-need-docker

[79] M. Vukolić, The Quest for Scalable Blockchain Fabric: Proof-of-Work vs. BFT
Replication. Cham: Springer International Publishing, 2016, pp. 112–125.

[80] I. Weber, V. Gramoli, A. Ponomarev, M. Staples, R. Holz, A. B. Tran, and
P. Rimba, “On Availability for Blockchain-Based Systems,” in IEEE Sympo-
sium on Reliable Distributed Systems (SRDS), 2017, pp. 64–73.

[81] “Emerald - proving Ethereum for the Clearing Use Case,” https://
emerald-platform.gitlab.io/static/emeraldTechnicalPaper.pdf.

[82] M. F. Neuts, Phase-type Probability Distributions. Boston, MA: Springer US,
2013, pp. 1132–1134.

[83] K. S. Trivedi, “SPNP User’s Manual – Version 6.0,” 1999.

[84] Y. Hochberg and A. C. Tamhane, Multiple Comparison Procedures. John
Wiley & Sons, Inc., 1987.

[85] K. Trivedi, Probability & Statistics with Reliability, Queueing & Computer
Science applications, 2nd ed. Wiley, 2001.

[86] S. Ramani, K. S. Trivedi, and B. Dasarathy, “Performance Analysis of the
CORBA Event Service using Stochastic Reward Nets,” in IEEE Symposium
on Reliable Distributed Systems (SRDS), 2000, pp. 238–247.

[87] E. Bauer, X. Zhang, and D. A. Kimber, Practical System Reliability. Wiley-
IEEE Press, 2009.

[88] H. Sukhwani, A. Bobbio, and K. S. Trivedi, “Largeness Avoidance in Avail-
ability Modeling using Hierarchical and Fixed-point Iterative Techniques,” In-
ternational Journal of Performability Engineering, vol. 11, no. 4, pp. 305–319,
July 2015.

[89] S. Ramani, K. S. Trivedi, and B. Dasarathy, “Performance Analysis of the
CORBA Notification Service,” in IEEE Symposium on Reliable Distributed
Systems (SRDS), 2001, pp. 227–236.

[90] N. Papadis, S. Borst, A. Walid, M. Grissa, and L. Tassiulas, “Stochastic Models
and Wide-Area Network Measurements for Blockchain Design and Analysis,”
in IEEE INFOCOMM, 2018.

159

https://emerald-platform.gitlab.io/static/emeraldTechnicalPaper.pdf
https://emerald-platform.gitlab.io/static/emeraldTechnicalPaper.pdf

[91] J. Göbel, H. Keeler, A. Krzesinski, and P. Taylor, “Bitcoin blockchain dynam-
ics: The selfish-mine strategy in the presence of propagation delay,” Perfor-
mance Evaluation, vol. 104, pp. 23 – 41, 2016.

[92] I. Kocsis, A. Pataricza, M. Telek, A. Klenik, F. Deé, and D. Cseh, “Towards
Performance Modeling of Hyperledger Fabric,” in International IBM Cloud
Academy Conference (ICACON), 2017.

[93] R. G. Sargent, “Verification and Validation of Simulation Models,” in Winter
Simulation Conference (WSC), Dec 2005, pp. 14 pp.–.

[94] T. H. Naylor and J. M. Finger, “Verification of computer simulation models,”
Management Science, vol. 14, no. 2, pp. B–92–B–101, 1967.

[95] M. Brandenburger, C. Cachin, R. Kapitza, and A. Sorniotti, “Blockchain and
Trusted Computing: Problems, Pitfalls, and a Solution for Hyperledger Fab-
ric,” CoRR, vol. abs/1805.08541, 2018.

[96] K. O’Dwyer and D. Malone, “Bitcoin Mining and its Energy Footprint.” The
Institution of Engineering & Technology, 2014.

[97] S. Sankaran, S. Sanju, and K. Achuthan, “Towards realistic energy profiling of
blockchains for securing internet of things,” in IEEE International Conference
on Distributed Computing Systems (ICDCS), July 2018, pp. 1454–1459.

[98] K. Delmolino, M. Arnett, A. Kosba, A. Miller, and E. Shi, “Step by Step
towards creating a Safe Smart Contract: Lessons and Insights from a Cryp-
tocurrency Lab,” in Financial Cryptography and Data Security, ser. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 02 2016, vol. 9604,
pp. 79–94.

[99] “IEEE Blockchain Standards,” https://blockchain.ieee.org/standards, ac-
cessed: 2018-09-20.

[100] Blockchain and electronic distributed ledger technologies. International Orga-
nization for Standardization (ISO), 2016, no. ISO/TC 307.

[101] “Focus Group on Application of Distributed Ledger Technology,” https://
www.itu.int/en/ITU-T/focusgroups/dlt/Pages/default.aspx, accessed: 2018-
09-20.

160

https://blockchain.ieee.org/standards
https://www.itu.int/en/ITU-T/focusgroups/dlt/Pages/default.aspx
https://www.itu.int/en/ITU-T/focusgroups/dlt/Pages/default.aspx

Biography

Harish Sukhwani received his B.E. degree in Electronics & Telecommunication Engi-

neering from Thadomal Shahani Engineering College, University of Mumbai in 2007,

and his M.S. degree in Electrical Engineering (Computer Networks) from the Univer-

sity of Southern California in 2010. Prior to joining the Ph.D. program, he worked in

the industry for 21
2

years as a Software Engineer for Cisco Systems in RTP, NC. Dur-

ing the Ph.D. program, he interned with NetApp Inc., IBM Corporation and IBM

Research - Zurich. Harish received IBM Ph.D. Fellowship for the year 2016-17 and

2017-18. He received the First Patent Application Invention Achievement Award at

IBM in 2017. He defended his Ph.D. dissertation on November 13, 2018.

His research interests are stochastic modeling, software performance & reliability,

blockchain networks, Internet of Things (IoT). He is interested in pursuing a career

in the industry, where he is interested in putting cutting-edge analytical research in

practice to solve practical problems. His scientific publications are listed below:

1. H. Sukhwani, Nan Wang, Kishor S. Trivedi, and Andy Rindos. Performance

Modeling of Hyperledger Fabric (Permissioned Blockchain Network). In IEEE

International Symposium on Network Computing and Applications (NCA), 2018.

2. H. Sukhwani, José M. Mart́ınez, Xiaolin Chang, Kishor S. Trivedi, and Andy

Rindos. Performance Modeling of PBFT Consensus Process for Permissioned

Blockchain Network (Hyperledger Fabric). In IEEE International Symposium

on Reliable Distributed Systems (SRDS), pages 253–255, Hong Kong, Sept.

161

2017.

3. H. Sukhwani, Rivalino Matias, Kishor S. Trivedi, and Andy Rindos. Monitoring

and Mitigating Software Aging on IBM Cloud Controller System. In IEEE

International Workshop on Software Aging and Rejuvenation (WoSAR), pages

266–272, Toulouse, France, Oct. 2017

4. H. Sukhwani, Javier Alonso, Kishor S. Trivedi, and Isaac McGinnis. Software

Reliability Analysis of NASA Space Flight Software: A Practical Experience.

In IEEE International Conference on Software Quality, Reliability and Security

(QRS), pages 386–397, Vienna, Austria, Aug 2016.

5. H. Sukhwani, Andrea Bobbio, and Kishor S. Trivedi. Largeness Avoidance in

Availability Modeling using Hierarchical and Fixed-point Iterative Techniques.

International Journal of Performability Engineering, 11(4):305–319, July 2015.

6. Rekha Singhal, Manoj Nambiar, H. Sukhwani, and Kishor S. Trivedi. Per-

formability Comparison of Lustre and HDFS for MR Applications. In IEEE

International Symposium on Software Reliability Engineering Workshops (ISS-

REW), pages 51–51, Nov 2014.

He participates in the Hyperledger Performance & Scalability Working Group

(PSWG), where he collaborated extensively to develop the following whitepaper

7. Hyperledger Blockchain Performance Metrics White Paper, v1.0 ed. The Linux

Foundation, Oct. 2018. [Online]. Available: https://www.hyperledger.org/

resources/publications/blockchain-performance-metrics

162

https://www.hyperledger.org/resources/publications/blockchain-performance-metrics
https://www.hyperledger.org/resources/publications/blockchain-performance-metrics

	Abstract
	List of Tables
	List of Figures
	Acknowledgements
	1 Introduction
	1.1 Contributions of the Dissertation
	1.2 Outline of the Dissertation

	2 Overview of Hyperledger Fabric
	2.1 Key Concepts
	2.1.1 Smart Contracts (chaincode)
	2.1.2 Consensus

	2.2 Hyperledger Fabric v0.6
	2.2.1 System overview
	2.2.2 Data structures
	2.2.3 Block Execution process

	2.3 Hyperledger Fabric V1
	2.3.1 Nodes
	2.3.2 Data Structures
	2.3.3 Transactions
	2.3.4 Transaction Flow
	2.3.5 Channels
	2.3.6 Ordering Service

	3 Performance Metrics for Blockchain Networks
	3.1 Performance Evaluation Setup
	3.2 Transaction Latency
	3.3 Transaction Throughput
	3.4 Scalability & Elasticity

	4 Empiricial Analysis for Hyperledger Fabric v0.6
	4.1 Experimental Setup
	4.2 Analysis for PBFT consensus process
	4.2.1 Measurements
	4.2.2 Model parameterization

	4.3 Analysis for Block Execution process
	4.3.1 Measurements
	4.3.2 Model parameterization

	4.4 Related Work

	5 Performance modeling of Hyperledger Fabric v0.6
	5.1 PBFT consensus process for Fabric v0.6
	5.2 Performance model of PBFT consensus process
	5.3 Model Validation
	5.4 Model Analysis
	5.4.1 Sensitivity Analysis
	5.4.2 Large number of peers

	5.5 Performance model of Block Execution process
	5.6 Discussion
	5.6.1 Threats to validity

	5.7 Related Work
	5.7.1 Performance evaluation of BFT consensus protocol

	5.8 Conclusions

	6 Empiricial Analysis for Hyperledger Fabric V1
	6.1 Experimental Setup
	6.2 Load generation using Hyperledger Caliper
	6.3 Test application
	6.4 Measurements
	6.5 Model Parameterization
	6.5.1 Transaction-level parameters
	6.5.2 Block-level parameters

	6.6 Analysis by transaction phase
	6.6.1 Endorsing
	6.6.2 Ordering
	6.6.3 Validation

	6.7 Implications of block size on transaction throughput and latency
	6.8 Related Work
	6.8.1 Hyperledger Fabric V1
	6.8.2 Public blockchain networks
	6.8.3 Performance evaluation framework

	6.9 Future Work

	7 Performance Modeling of Hyperledger Fabric V1
	7.1 SRN model of the system
	7.2 Model Parameterization
	7.3 Model Validation
	7.4 Overall system analysis
	7.5 Model Analysis
	7.5.1 Endorsement Process
	7.5.2 Ordering Service
	7.5.3 Block Validation & Commit

	7.6 Discussion
	7.6.1 Largeness of stochastic model
	7.6.2 Limitations of our model
	7.6.3 Threats to validity

	7.7 Related Work
	7.8 Conclusions

	8 Model Verification & Validation
	8.1 Steps for Model Verification & Validation
	8.1.1 Face validation
	8.1.2 Input-output validation
	8.1.3 Validation of model assumptions

	8.2 Threats to validity
	8.2.1 Model Logic and Code
	8.2.2 Model Parameters
	8.2.3 System configuration settings

	9 Conclusions
	9.1 Conclusions
	9.2 Fabric Performance Management Infrastructure
	9.3 Future Research Directions
	9.3.1 Systems & Performance
	9.3.2 Adoption & Usability

	A Hyperledger Fabric V1 network setup
	A.1 Hyperledger Fabric software installation & network setup

	B Environment details of a blockchain network
	C Model and analysis code for Hyperledger Fabric v0.6
	C.1 SRN code for model with n=4
	C.2 Python script to generate SRN code for larger networks
	C.3 R code for Probability distribution fitting

	D Model and analysis code for Hyperledger Fabric V1
	D.1 Endorsing process
	D.2 Ordering Service
	D.3 Committing peer

	E Mathematical expression for Probability distributions
	Bibliography
	Biography

