
Monitoring and Mitigating Software Aging on
IBM Cloud Controller System

Harish Sukhwani1, Rivalino Matias Jr.2, Kishor S. Trivedi1, and Andy Rindos3

1Department of Electrical & Computer Engineering, Duke University, Durham, USA
2School of Computer Science, Federal University of Uberlandia, Uberlandia, Brazil

3IBM Corporation
hvs2@duke.edu, rivalino@ufu.br, ktrivedi@duke.edu, rindos@us.ibm.com

Abstract—As enterprises continue to move their workloads
from traditional server-room environments to private cloud-based
systems, there is an increasing desire and ability for companies
like IBM to centrally monitor the systems on behalf of their
customers to proactively help to mitigate any potential failure
scenarios. In this paper, we investigate failures caused by software
aging affecting an enterprise-class cloud controller system. We
describe a service developed to continuously analyze the key
system/application metrics from customer systems, identifies
potential aging-related failure scenarios within the next two days,
and generates a list of tasks for the development-operations
team at IBM to mitigate the potential failures. To help the team
prioritize the tasks, we propose a prioritization scheme to assign
severity to such tasks. From our analysis of two months of offline
data, we find that the tasks generated have a precision of around
0.80 and recall of 1, which means that our approach did not miss
any aging-related failure event, with around 80% of the failure
events being true.

Index Terms—software aging, software rejuvenation, cloud
computing, failure forecasting

I. INTRODUCTION

Although it is increasingly popular for organizations to run
their services on public cloud computing service providers
such as Amazon Web Services (aws.amazon.com) and IBM
Softlayer (www.softlayer.com), many organizations are still
wary about moving all their services and data to the cloud
due to security reasons, regulatory requirements and other
issues [1]. Such organizations are deploying private clouds
in their data-centers, and moving their workload from their
traditional server-room environment to a well-managed cloud
infrastructure [2]. We study the IBM PureApplication System
[3], which is a cloud computing system in a box and can be
readily deployed to create a private cloud environment in an
enterprise.

Private cloud service comes with various benefits, however,
it also comes with a higher cost, especially in terms of onsite
management [4]. Thus, ensuring the operational efficiency of
the private cloud infrastructure is of great importance nowa-
days. For ‘cloud in a box’ products such as PureApplication,
IBM provides support services to help customer resolve issues
raised by them. There is an increasing expectation from IBM to
resolve issues more proactively and mitigate potential failure
scenarios. To fulfil this expectation, a software development
team at IBM PureApplication developed a comprehensive

monitoring service that monitors hardware component failures,
workload deployment failures and other existing failure sce-
narios in customer systems. This monitoring service is used
by the development-operations (DevOps) team. It has helped
reduce the number of service tickets and resolve issues quicker.
We enhance this service to continuously analyze and mitigate
potential software aging [5] issues in the customer systems.

In this paper, we describe a service developed to perform
software aging analysis for key system/application metrics
customized for each customer system, with the goal to identify
potential aging-related failure scenarios within the next two
days. This service generates tasks for the DevOps team with
the necessary maintenance (e.g., rejuvenation) procedures.
Taking the uncertainty of our prediction estimates into account,
we design a scheme to assign a severity level to each task. We
focus on software aging-related issues in the cloud controller
node of the PureApplication System called PureSystems Man-
ager, which plays a critical role in letting users deploying
workloads, manage the system resources, maintaining the
system state in the event of an outage.

II. IBM PUREAPPLICATION SYSTEM

IBM PureApplication System is a pre-configured, open
platform for Platform as a Service (PaaS) solution that simpli-
fies middleware deployment and management through pattern-
based deployment model for on-premise data centers [6]. In
a PureApplication system, workloads run as a pattern, which
is essentially a collection of Virtual Machines (VM) that run
collectively to deliver the required service. The pattern defines
all the application configuration specifics, dependencies, and
deployment related details.

In our research, we focus on the PureSystems Manager
(PSM) node which performs various administrative tasks such
as deploying the workload patterns, load-balancing workload
patterns across compute nodes, monitoring the performance of
patterns and handling failure scenarios at pattern-level. PSM
plays a critical role from system dependability perspective.
The major subsystems of the PSM node are shown in Figure 1.
From the software aging perspective, at the application-level,
we focus on processes belonging to API Servers and Workload
Deployer (IWD) subsystems since they perform almost all the
administrative tasks on the PSM.

Event Processing / Call-home

DB2 Server

Virtualization Management
(vCenter)

API Servers

Web Server

Workload Deployer (IWD)

Job Queue

IBM CE Service Console

OS Core Function

Recovery / HA Engine

Storage
Controller

Management / Workload
LUN

HA Tie Breaker Disk

PureSystems Manager (PSM) (Leader)

PureSystems Manager (PSM) (Standby)

Fig. 1: Software Subsystems in PureSystems Manager (PSM)

PSM nodes are configured as a pair in warm-standby mode,
providing redundancy at both hardware and software levels.
For the active node, the operating system (OS) and all the
software subsystems are running. For the standby node, the OS
is booted up, and few software subsystems (shown in bold in
Figure 1) are running continuously. In the case of active node
failure, the standby node starts all the other subsystems of the
PSM, some of which connect with the management logical
unit number (LUN) on the storage node to sync its internal
state with the internal state of the ex-active node, before taking
over as the active node. Then the new active node attempts to
bring up the now-standby node using various strategies (soft
reboot, hard reboot, etc.). It also investigates any potential
hardware failure scenarios and reports it on to the console
for the system administrator.

III. SOFTWARE AGING ISSUES IN PUREAPPLICATION
SYSTEM

To understand the nature of software failures encountered
in the field, we review the information collected in the failure
reports and corresponding defect reports in the repository,
spanning across five years. Due to the large number of defects
in repository (10,000+), we first review the defects suggested
by IBM software engineers and then search for reports con-
taining keywords such as “OOM”, “out of memory”, “out of
disk”, “slowing”,“leak”, “increa*”, “decrea*”, “exhaust”, as
suggested in [7]. Following are three representative issues of
software aging that reoccurred frequently and motivated our
research.

1. Increasing usage of disk partitions (/var/log, others)
During PSM’s operation, partitions such as /var/log are
filled up at a consistent rate. If the usage of partitions such as
/var/log reaches 100%, it can lock up the process writing to
the log file, causing the system to become unresponsive. Thus,
uncontrolled growth in the disk usage can be considered as a
software aging effect. Log files for the past one to two weeks
are necessary to find the root-cause of any critical issues that
could arise in the PSM. PSM runs the logrotate1 utility

1www.linuxcommand.org/man pages/logrotate8.html

as a nightly cron job that rotates the log files, compresses
them and removes files that are older than two weeks. We
experienced three potential issues with this. In situations where
the log files were growing faster than expected, the disk filled
up before the nightly logrotate job kicked in. In another case,
the logrotate utility tried to copy and rotate a huge log file,
but the partition did not have enough space to copy that file;
hence logrotate skipped that file, which kept growing and
eventually filled up the partition. In yet another case, a certain
set of log files were not covered by the logrotate tool in the
earlier releases of software, and those eventually filled up the
partition. Continuous analysis of disk usage would help spot
issues in case the log rotation doesn’t work as expected or the
backup mechanism fails to kick in.

2. Degrading response time
In some systems, it was observed that displaying the list
of patterns deployed was taking too long (100s of seconds
rather than 10s of seconds). Upon investigation, it was found
that the CPU utilization and memory usage of one of the
IWD processes were unusually high. The IWD provides ser-
vice to store metrics corresponding to each pattern. After a
detailed investigation, it was found that a legacy collection
of patterns (that were heavily used in these systems) were
making Secure Shell (SSH) connections to this process too
frequently. Besides, most of the connections were ephemeral.
Thus the process spent too much time managing the SSH
cache with entries that were hardly reused. This problem was
fixed by reducing the frequency of the connections made by
the patterns. Although this issue sounds like a performance
problem, it started showing up in the customer system only
after few weeks of usage, due to a memory leak in the
Transmission Control Protocol (TCP) connection queue of the
same IWD process, which grew in memory footprint only
when the number of concurrent connections was high.

3. Thread leakage
In PSM, the jobs are executed by worker processes. A master
process manages this pool. Master and workers communicate
using Named Pipes2, where master process creates a pipe to
receive inputs from the worker, and the worker process creates
a pipe to receive inputs from the master. Both master and
worker processes spawn a thread to listen to their respective
pipes. Occasionally, the worker process is terminated via a
kill command, upon which the worker process terminates
its input listening thread, removes the input file pipe and
sends an end-of-file (EOF) to the output file pipe for master
process. When the listening thread on master process sees
the EOF, it verifies if the worker’s input file pipe is deleted,
before it removes the input file pipe and terminates itself. In
rare situations, the worker’s input file pipe was not deleted
before the master verified, and thus the master’s input thread
got leaked. We observed that the master process was leaking
around 30 threads per day, which started slowing down the
job queue after a few days of running.

In summary, complex systems such as cloud controllers

2http://www.linuxjournal.com/article/2156

have many system-wide and application-specific resources that
could potentially exhibit software aging. Although such sys-
tems are thoroughly tested, some of the defects are identified
only after they are in operation at customer sites, since their
activation and error propagation conditions are complex and
are uncovered only in the field [5]. Moreover, such failures
could have been avoided if we had monitored and analyzed
the corresponding system or application metric and performed
rejuvenation either at the application or the system (node)
level. This motivated our approach to continuously monitor
and analyze the usage of resources in the customer systems
and prepare a dashboard with a list of corrective actions for
the DevOps team members who can work directly with the
customers/field engineers and prevent failures from occurring.

IV. SOFTWARE AGING ANALYSIS OF CUSTOMER SYSTEMS

Software aging phenomenon is detected through aging
indicators, which refers to the system variables that can be
directly measured and can be related to the software aging
phenomenon [5]. Aging indicators can be classified as system-
wide or application-specific [8], [9]. Identifying both classes
of aging indicators helps us identify the potential source of
software aging and thus apply selective rejuvenation action
[10]. The issues found in the reports (Section III) provide an
initial list of aging indicators. Then, we reviewed the aging
indicators from literature, and map them to our PSM system
and outline our findings in Table I.

TABLE I: Aging indicators for PSM node
Class Aging Indicators
System-wide Free swap memory [11], disk usage of key partitions

(e.g. /var/log), mean response time [11]
Application-
specific

real memory consumed [11], [12], [13], no. of threads
[10], no. of open files [10]

A. Aging Indicators

Although total memory consumed by the system is the
most cited aging indicator in the literature [9], recent studies
[14], [15] have demonstrated that application-specific aging
indicators such as heap usage or resident set size (RSS) of the
application are more accurate in predicting memory-related
aging. In our case study, we monitor the virtual memory size
(VMS) and the RSS for each application. In our future work,
we plan to capture the heap usage for each application, which
could be a more accurate aging indicator than RSS. Most of
the system-wide and application-specific aging indicators are
collected using the NMON3 tool running in controller node’s
Linux OS. All the measurements are taken once every five
minutes.

B. Analysis Techniques

We first determine if the data collected shows an increas-
ing trend over time, indicating increasing memory usage
or slowing response time and so on. To detect monotonic
trends in time-series data, we use the Mann-Kendall test [16],
[17] at 5% level of significance with correction for serial

3http://nmon.sourceforge.net/

correlation using the Yue and Pilon method [18]. To model
the growth trend, we pick some of the popular techniques
from the literature: Theil-Sen’s slope (TS) [19], [11], linear
model (LM) [20], quadratic model (Quad.) [20], growth curve
model (Growth) [20], piecewise linear model (PLM) with three
breakpoints [10]. For datasets that exhibit seasonal behavior
as well, we used the time-series techniques such as Holt, Holt-
Winters [21], and ARIMA (Autoregressive Integrated Moving
Average) [21]. We also attempt variants of Holt-Winters with
multiplicative and damped trend.

Using the model that best fit our dataset, we predict the
future values of the aging indicator (for two days ahead in
our case) and estimate the mean prediction along with the
prediction interval (PI). The PI is an estimate of the range in
which a single new future observation will fall, with a certain
probability [22].

C. Analysis Results & Inference

For our analysis, we fetch aging indicator datasets for a
six-day period from a system running the largest workloads
among all customers analyzed (more than 750 VMs). This
data were collected seven days after the latest PureApplication
release [23] was loaded, to make sure that the system had a
steady workload and no severe errors were encountered due
to the new release. Our goal is to predict the value taken by
aging indicators for the next two days (details in next section).
From the time-series dataset collected for each aging indicator,
we consider the data points for the first four days as training
data (∼67%) and the next two days as test data (∼33%). In
Figures 2, 3, this separation is shown with a vertical dash-dot
line. To evaluate the quality of prediction, we rank the models
with three criteria, viz. Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), and Mean Absolute Percentage
Error (MAPE), and select the model with the best median
rank. Aging analysis results for various PSM controller and
workload deployer processes are summarized in Table II.

The mean slope corresponds to the slope estimated by the
fitted LM. The intercept value of trend line corresponds to the
memory usage at the beginning of the analysis window. By
estimating the slope as a percentage of the intercept value, we
get an idea of the relative magnitude of the growth. We make
the following observations:

1) Almost all application processes show an increasing RSS.
Since the slope and the intercept vary broadly across
applications, it is inappropriate to have a fixed threshold
of memory usage across all the applications.

2) Few applications show an increasing VMS. Its growth
pattern usually correlates with the corresponding RSS.

3) Notice the staircase pattern of memory growth from
Figures 2 and 3. Since application memory usage grows
in large infrequent steps, the prediction techniques need
to be robust enough to catch it. We found the piecewise
linear model to be the best fit across most of the datasets.

For system-wide aging indicators, only disk usage for
/var/log shows a growth trend with a slope of 0.21% / day
(Figure 5). The current slope is small due to major changes

TABLE II: Aging analysis of memory usage in various Applications

Process Aging
indicator

Trend
detected

Mean slope
(MB/day)

Intercept
(MB) Best-fit

technique
PSM Controller process

Appln1 RSS No – – –
VMS No – – –

Appln2 RSS Yes 161.57 1871.22 PLM
VMS Yes 160.76 2064.86 PLM

Appln3 RSS Yes 12.01 1286.26 TS
VMS Yes 1.48 1956.45 Quad.

Appln4 RSS Yes 0.911 841.92 Growth
VMS No – – –

Appln5 RSS Yes 25.13 1421.34 PLM
VMS Yes 0.56 2340.84 LM

Appln6 RSS Yes 8.63 718.42 TS
VMS No – – –

Workload Deployer process

iwd1 RSS Yes 173.37 4313.42 PLM
VMS Yes 18.48 5222.61 PLM

iwd2 RSS Yes 15.51 3324.65 PLM
VMS No – – –

iwd3 RSS No – – –
VMS No – – –

iwd4 RSS Yes 7.01 2740.19 Quad.
VMS Yes 2.29 4315.69 PLM

2100000

2400000

2700000

Feb 01 Feb 03 Feb 05
Date / Time

M
em

or
y

us
ag

e
(k

B
)

 Empirical

Theil-Sen's

Linear

Quadratic

Growth curve

Piecewise Linear

Fig. 2: RSS usage for PSM “Appln2” process

1275000

1300000

1325000

1350000

Feb 01 Feb 03 Feb 05
Date / Time

M
em

or
y

us
ag

e
(k

B
)

 Empirical

Theil-Sen's

Linear

Quadratic

Growth curve

Piecewise Linear

Fig. 3: RSS usage for PSM “Appln3” process

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C
F

Fig. 4: ACF plot for disk usage of /var/log partition

Date / Time

/v
a

r/
lo

g
 (

%
)

Feb 03

4
7

4
8

4
9

5
0

5
1

Feb 04 Feb 05 Feb 06Feb 02Feb 01Jan 31

Fig. 5: Predicting disk usage of /var/log partition using Holt-Winters
technique (blue and gray area represents 50% and 95% prediction
intervals respectively)

in logging for this release; however, an earlier investigation
found the usage growing at 2.5% per day, which caused serious
problems in the absence of robust logrotation mechanisms.
Due to nightly logrotation operation, it has a saw tooth wave
pattern with growing trend and exhibits a seasonal pattern with
one day period. From the autocorrelation function (ACF) plot
in Figure 4, we also observe an hourly seasonal pattern as well
(at lag 12, 24 and so on), but we cannot explain it. We remove
the hourly seasonal pattern by using hourly approximated
data; thus our dataset has a period of 24 (corresponding
to 24 samples per day). Since the data show both trend
and seasonality, we model these properties using Holt, Holt-
Winters and ARIMA methods. We find that Holt-Winters (with
additive trend) is the best fit, followed closely by Holt-Winters
with multiplicative seasonal trend. We also performed one-
step cross-validation across techniques that were close best-fit
(Figure 6), which provides us forecast estimates across rolling
origins [22]. We see that Holt-Winters is the best fit technique

2 4 6 8 10 12

0
.2

0
.4

0
.6

Lag (hour)

M
A

E

Holt-Winters
Holt-Winters (Mult.)
ARIMA (auto)
Holt

One-step forecasts using Cross Validation

Fig. 6: Cross validation of multiple techniques to predict disk usage
of /var/log partition

(standby)
PSM

(leader)
PSM

PureApplication
System

Appln. 1

...

Threads

Memory

Buffers

…

CPU Disk

Memory IO

...

PSM (leader)

 Appln.-level metrics
(NMON, other log files)

Archive Customer
Archives

Elastic Database

Software Aging Monitoring & Analysis Server

Parsing
scripts

Analytical
& Rule
Engine

Visualization
Engine

Customer Site IBM Site

System-level metrics
(mainly using NMON)

.
.
.

Appln. n

Threads

Memory

Buffers

…

Fig. 7: Architecture of the monitoring and data analytical infrastructure

across all lag values (up to 12 hours). We did not find any
growth trend for the remaining aging indicators discussed in
Table I, and skip their analyses for brevity.

V. CONTINUOUS ANALYSIS AND MITIGATION OF
SOFTWARE AGING

The primary goal of our research is to develop a service that
helps to detect and mitigate software aging in cloud systems
deployed at the customer site. This service lists software
rejuvenation tasks that can be performed by a centrally-located
DevOps team. As mentioned earlier, we consider the following
two requirements: a) notification horizon of two days, b)
severity level associated with the task notification.

A. Monitoring and Data Analytical Infrastructure

The architecture of our monitoring and data analytical
infrastructure is shown in Figure 7. Log files capturing various
metrics are collected together as an archive and sent to the
IBM support service. Due to the complexity involved in
transferring this archive, we decided to send it to the IBM
site every 24 hours. In our analysis (summarized in Section
III), this frequency was reasonable to identify most aging-
related problems. The required datasets are parsed from the
log files and loaded into an Elastic4 database. This data can be
visualized interactively on a web browser using the Kibana5

visualization engine. Most of our research and development
effort goes into developing the “Analytical & Rule Engine”
block. This block pulls the datasets from Elastic database,
analyzes it using the algorithm presented in Subsection V-C,
and generates actionable items that are pushed into the Elastic
database, which can be viewed on the Kibana dashboard.

B. Challenges involved

Our first challenge is to accurately estimate the “time to
resource exhaustion” for each aging indicator corresponding to
each system deployed at the customer site. Since each system
is running a different workload and has been running since a
different start time, we perform customized analysis for each
aging indicator in each system. As new dataset arrives, we
extract data for the past two days to evaluate the models that

4https://www.elastic.co/
5https://www.elastic.co/products/kibana

fitted well on the data predicted for the same period earlier.
We use this best-fit model to predict the aging indicator for
the next prediction window of two days. Thus we use the most
recently validated model for our predictions.

The next challenge is to account for the uncertainty in the
prediction estimates by using the prediction interval estimates.
Assuming that the new dataset arrives at midnight, let us
analyze the RSS usage for “Appln3” at midnight for three
consecutive days using the linear model (Figure 8). For the
sake of this example, let us assume an RSS usage threshold
of 1.35GB before rejuvenating the application. Figure 8 shows
the prediction mean estimates for the next two days along
with 50% prediction interval and 95% prediction interval for
three consecutive days. Let us define our scheme for assigning
“Severity” for our alerts. In the next two days, if the resource
is expected to cross the threshold only within the 95% interval,
but not within the 50% interval, then there is a small possibility
of resource exhaustion. Let us mark such alerts as “Yellow”
(low severity). If the resource is expected to cross within
95% and 50% interval, then there is a higher possibility, and
such alerts can be marked as “Orange” (medium severity)
(Figure 8b). If the mean prediction is also expected to cross
the threshold within two days, we can mark such alerts as
“Red” (high severity) (Figure 8c). Thus we use the prediction
intervals to assign a severity rating to our alerts.

C. Continuous Analysis scheme for software aging

Inputs to the algorithm:

• N is the notification horizon, the minimum number of
days required for the DevOps team to take action (2 days
in our case).

• Customers is the list of customer system IDs.
• AgingIndicators all is the list of aging indicators defined

for each customer. Each aging indicator defines the slope
estimation technique with variable technique and its cor-
responding parameters with variable params, threshold
for alert with variable limit, and corresponding action
with variable action.

• CurrentTime indicates current time while generating an
event.

• technique all is a list of all slope estimation techniques.

Rejuvenation threshold

1250000

1275000

1300000

1325000

1350000

Jan-29 Jan-30 Jan-31 Feb-01 Feb-02 Feb-03 Feb-04
Date/Time

M
em

or
y

us
ag

e
(k

B
)

(a) Day 1 - No alert

Rejuvenation threshold

Jan-30 Jan-31 Feb-01 Feb-02 Feb-03 Feb-04 Feb-05
Date/Time

(b) Day 2 - “Yellow” alert

Rejuvenation threshold

Jan-31 Feb-01 Feb-02 Feb-03 Feb-04 Feb-05 Feb-06
Date/Time

(c) Day 3 - “Red” alert
Fig. 8: PSM “Appln3” RSS usage process over three consecutive days

We are assuming all aging indicators show an increasing
trend; however, our scheme can easily accommodate other
cases.

Algorithm 1 Continuous analysis scheme to detect software aging in customer
systems (run nightly)

for each customer in list customers all do
for each AgI in list AgingIndicators all do

AgI Past ← measured AgI values for past N days
for each technique in list technique all do

Fetch AgI PastPred$technique as an array of predicted AgI values
from N days before

Evaluate goodness-of-fit between AgI Past and AgI PastPred$technique
if best-fit technique then

AgI$technique ← technique
AgI$params ← parameters for technique

end if
end for
Fetch AgI values for past 4 days and estimate trend using Mann-Kendall test
if trend is +ve then

Estimate AgIPred for time [CurrentTime : CurrentTime + N days]
using (AgI$technique, AgI$params)

AgIPred Mean ← mean AgIPred at time CurrentTime+N
AgIPred Upper95 ← 95% upper PI of AgIPred at time CurrentTime+N
AgIPred Upper50 ← 50% upper PI of AgIPred at time CurrentTime+N
if (AgIPred Upper95 > AgI$limit) & (AgIPred Upper50 > AgI$limit)

& (AgIPred Mean ≥ AgI$limit)
create Event (CurrentTime, customer, AgI, “Red”, AgI$action)

else if (AgIPred Upper95 > AgI$limit) & (AgIPred Upper50 ≥ AgI$limit)
create Event (CurrentTime, customer, AgI, “Orange”, AgI$action)

else if (AgIPred Upper95 ≥ AgI$limit)
create Event (CurrentTime, customer, AgI, “Yellow”, AgI$action)

end if
end if
Estimate AgIPred for time [CurrentTime: CurrentTime + N days]

using all techniques and store
end for

end for

D. Evaluation of our scheme

We analyze the above-described algorithm with over two
months of offline data for the RSS usage of “Appln3” and “Ap-
pln6” respectively, by randomly choosing thresholds falling
within the range of data and generating the list of alerts.
Across all severity levels, we find the alerts are generated with
a precision of around 0.8 and recall of 1.0. Thus for every
threshold violation, we find at least one event generated with
any severity level. We can conclude that the slope estimation
techniques are adapting well to different data patterns. Another
reason is the quality of the aging indicator since application-
specific aging indicators are significantly superior to system-
wide aging indicators. Note that most of the false negative
alerts were those generated too early (a few days sooner than

our notification horizon), which is not necessarily harmful. We
leave further tuning and analysis of the scheme as future work.

VI. RELATED WORK

Our work is inspired by the solution developed earlier for
the IBM Director system management tool at IBM [10] which
were focused on cluster environments. Our work differs in
two aspects: i) Aging detection and analysis are performed
in a centralized analytics server as opposed to performing
it in each cluster node; ii) Rejuvenation tasks are managed
by a centralized DevOps team located at IBM, as opposed
to the customer itself. In addition to providing this as a
service to customers, it provides a wide-view of issues running
across all customer systems. We plan to use this approach
to find patterns of software aging issues among customers
running similar workload or running same PSM software
release and resolve issues proactively. We also plan to extend
the analytical subsystem to detect software aging at hypervisor
and operational profile level. Authors in [10] also analyzed the
availability of cluster system using time-based vs. inspection-
based techniques and found inspection-based rejuvenation
results in much higher availability. We preferred to take this
approach as well.

Software aging-related issues have been observed in various
open-source cloud-oriented software systems [7], virtualiza-
tion systems [24], and middleware systems [13]. In [20], the
authors reported software aging in the memory usage of the
node controller and other critical components in Eucalyptus6

cloud management system. They used time-series prediction
techniques to estimate time to reach critical resource usage
threshold. To increase system availability, they proposed re-
juvenating the system within a safe time limit before the
critical resource usage is attained. However, their work did not
account for the uncertainty in the prediction estimates. Also,
they assumed the system could be rejuvenated (automatically
/ manually) as soon as the safe time limit is reached, whereas
we consider a remote monitoring and DevOps scenario.

6http://www8.hp.com/us/en/cloud/helion-eucalyptus.html

VII. CONCLUSION & FUTURE WORK

In this paper, we share our experience monitoring and
mitigating real software aging issues in the cloud controller
node of IBM PureApplication systems deployed at customer
sites. We discuss three representative software aging issues that
frequently occurred, viz. increasing usage of disk partitions,
degrading response time, and thread leaks. Failures caused by
such defects could have been avoided if we received early
warnings for potential failure scenarios and corrective actions
were taken preventively. We built a system at IBM site that
continuously monitors and analyzes key aging indicators for
all the customer systems, and generates alerts with a lead time
of two days. By taking into account the uncertainty involved
in such predictions, we propose a prioritization scheme that
assigns severity to such tasks, which helps the DevOps team
prioritize the aging mitigation tasks along with their other
responsibilities. In this study, we also share our insights and
guidance on trend estimation techniques that work the best
for each aging indicator. By having a custom rejuvenation
threshold for each aging indicator per customer, we conclude
that continuously monitoring and analyzing key aging indica-
tors can help prevent failure scenarios in systems deployed at
customer sites.

Our current study is restricted to the IBM PureApplication
platform. Future works could apply the same approach to
other cloud platforms (e.g., Eucalyptus). We plan to evaluate
the algorithm under different DevOps scenarios, sampling
periodicity (e.g., 6 hours, 12 hours), and shorter prediction
durations (e.g., 4 hours, 8 hours). Thus our scheme could be
expanded to work in both online and continuously. Also, we
plan to expand this model in the future taking other relevant
system/application parameters into account, while still keeping
the scheme general enough. Also, we plan to enhance alerts
to include information related to prior fixes applied by the
DevOps team using IBM Watson APIs7.

ACKNOWLEDGEMENT

This research was supported in part by IBM under a faculty
award and an IBM student fellowship. The authors would like
to thank Hugh Hockett and Christopher Laffoon for mentoring
Harish through the project, to Nicholas Schambureck for
support with the software infrastructure, and to Derrick Foley
and Keith Rafferty for motivation and support for this research.

REFERENCES

[1] McKinsey and Company, “From box to cloud: An approach for software
development executives,” http://www.mckinsey.com/business-functions/
business-technology/our-insights/from-box-to-cloud, January 2015, ac-
cessed: 2017-08-15.

[2] IBM, “Advantages and options of private cloud comput-
ing,” https://www.ibm.com/developerworks/rational/library/
private-cloud-advantages-options/, accessed: 2017-08-15.

[3] ——, “A tour of the hardware in IBM PureApplication System,”
http://www.ibm.com/developerworks/websphere/techjournal/1407
woolf2/1407 woolf2.html, accessed: 2017-08-15.

7https://www.ibm.com/watson/

[4] Aerohive Networks, “Public or private cloud: The choice
is yours,” http://media.aerohive.com/documents/901259441
Aerohive-Whitepaper-Public-or-Private-Cloud.pdf, accessed: 2017-
08-15.

[5] M. Grottke, R. Matias, and K. Trivedi, “The Fundamentals of Software
Aging,” in IEEE WoSAR, Nov 2008, pp. 1–6.

[6] IBM, “How, where, and why IBM PureApplication fits in your cloud,”
http://www.ibm.com/developerworks/websphere/techjournal/1506
dejesus/1506 dejesus-trs.html, accessed: 2017-07-15.

[7] F. Machida, J. Xiang, K. Tadano, and Y. Maeno, “Aging-Related Bugs in
Cloud Computing Software,” in IEEE WoSAR, Nov 2012, pp. 287–292.

[8] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “A Survey of
Software Aging and Rejuvenation Studies,” ACM JETC, vol. 10, no. 1,
pp. 8:1–8:34, Jan. 2014.

[9] N. A. Valentim, A. Macedo, and R. Matias, “A Systematic Mapping
Review of the First 20 Years of Software Aging and Rejuvenation
Research,” in IEEE WoSAR, Oct 2016, pp. 57–63.

[10] V. Castelli, R. E. Harper, P. Heidelberger, S. W. Hunter, K. S. Trivedi,
K. Vaidyanathan, and W. P. Zeggert, “Proactive Management of Software
Aging,” IBM Journal of Research and Development, vol. 45, no. 2, pp.
311–332, Mar. 2001.

[11] M. Grottke, L. Li, K. Vaidyanathan, and K. Trivedi, “Analysis of
Software Aging in a Web Server,” IEEE Trans. on Rel., vol. 55, no. 3,
pp. 411–420, Sept 2006.

[12] R. Matias, I. Beicker, B. Leitao, and P. R. M. Maciel, “Measuring
software aging effects through OS kernel instrumentation,” in IEEE
WoSAR, Nov 2010, pp. 1–6.

[13] G. Carrozza, D. Cotroneo, R. Natella, A. Pecchia, and S. Russo,
“Memory Leak Analysis of Mission-Critical Middleware,” Journal of
Systems and Software, vol. 83, no. 9, pp. 1556 – 1567, 2010.

[14] F. Machida, A. Andrzejak, R. Matias, and E. Vicente, “On the effec-
tiveness of Mann-Kendall test for detection of software aging,” in IEEE
WoSAR, Nov 2013, pp. 269–274.

[15] R. Matias, A. Andrzejak, F. Machida, D. Elias, and K. Trivedi, “A
Systematic Differential Analysis for Fast and Robust Detection of
Software Aging,” in IEEE SRDS, Oct 2014, pp. 311–320.

[16] H. B. Mann, “Nonparametric Tests Against Trend,” Econometrica,
vol. 13, no. 3, pp. 245–259, 1945.

[17] M. G. Kendall, Rank Correlation Methods, 4th ed. Griffin, London,
1970.

[18] S. Yue, P. Pilon, B. Phinney, and G. Cavadias, “The influence of
autocorrelation on the ability to detect trend in hydrological series,”
Hydrological Processes, vol. 16, no. 9, pp. 1807–1829, 2002.

[19] S. Garg, A. van Moorsel, K. Vaidyanathan, and K. Trivedi, “A Method-
ology for Detection and Estimation of Software Aging,” in IEEE ISSRE,
Nov 1998, pp. 283–292.

[20] J. Araujo, R. de S. Matos, V. Alves, P. R. M. Maciel, F. V. de Souza,
R. M. Jr., and K. S. Trivedi, “Software Aging in the Eucalyptus Cloud
Computing Infrastructure: Characterization and Rejuvenation,” ACM
JETC, vol. 10, no. 1, pp. 11:1–11:22, 2014.

[21] J. P. Magalhães and L. M. Silva, “Prediction of performance anomalies in
web-applications based-on software aging scenarios,” in IEEE WoSAR,
Nov 2010, pp. 1–7.

[22] R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and
Practice. OTexts, 2013.

[23] IBM, “IBM Pureapplication Software Suite v2.2.2,” http:
//www-01.ibm.com/common/ssi/rep ca/5/877/ENUSZP16-0445/
ENUSZP16-0445.PDF, accessed: 2017-07-15.

[24] F. Machida, D. S. Kim, and K. S. Trivedi, “Modeling and analysis
of software rejuvenation in a server virtualized system with live VM
migration,” Performance Evaluation, vol. 70, no. 3, pp. 212 – 230, 2013.

http://www.mckinsey.com/business-functions/business-technology/our-insights/from-box-to-cloud
http://www.mckinsey.com/business-functions/business-technology/our-insights/from-box-to-cloud
https://www.ibm.com/developerworks/rational/library/private-cloud-advantages-options/
https://www.ibm.com/developerworks/rational/library/private-cloud-advantages-options/
http://www.ibm.com/developerworks/websphere/techjournal/1407_woolf2/1407_woolf2.html
http://www.ibm.com/developerworks/websphere/techjournal/1407_woolf2/1407_woolf2.html
http://media.aerohive.com/documents/901259441_Aerohive-Whitepaper-Public-or-Private-Cloud.pdf
http://media.aerohive.com/documents/901259441_Aerohive-Whitepaper-Public-or-Private-Cloud.pdf
http://www.ibm.com/developerworks/websphere/techjournal/1506_dejesus/1506_dejesus-trs.html
http://www.ibm.com/developerworks/websphere/techjournal/1506_dejesus/1506_dejesus-trs.html
http://www-01.ibm.com/common/ssi/rep_ca/5/877/ENUSZP16-0445/ENUSZP16-0445.PDF
http://www-01.ibm.com/common/ssi/rep_ca/5/877/ENUSZP16-0445/ENUSZP16-0445.PDF
http://www-01.ibm.com/common/ssi/rep_ca/5/877/ENUSZP16-0445/ENUSZP16-0445.PDF

